首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium (Mg) deficiency in plants is a widespread problem, affecting productivity and quality in agriculture. The mechanism of Mg deficiency inducing antioxidant enzyme activities has not been elucidated in rice. We examined the relationship among abscisic acid (ABA), H2O2, and antioxidant enzymes in the leaves of rice seedlings grown under conditions of Mg deficiency. The expression of OsRab16A, an ABA responsive gene, was used to determine the content of ABA. Mg deficiency resulted in increased ABA content in leaves of rice seedlings. The production of H2O2 was examined by 3,3-diaminobenzidine staining and a colorimetric method. Mg deficiency also induced H2O2 production in leaves, which was blocked by dipehnyleneiodonium chloride (DPI), an NADPH oxidase inhibitor. Tungstate (Tu), an ABA biosynthesis inhibitor, was effective in reducing Mg deficiency-increased ABA content, as well as Mg deficiency-induced H2O2 production. Both Tu and DPI were effective in reducing Mg deficiency-induced activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in the leaves. Mg deficiency-induced ABA accumulation may trigger increased production of H2O2, which may involve plasma-membrane NADPH oxidase, and, in turn, up-regulates the activities of antioxidant enzymes in leaves of rice seedlings.  相似文献   

2.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

3.
The role of H2O2 in salicylic acid (SA)-induced protection of rice leaves against subsequent Cd toxicity was investigated. SA pretreatment resulted in an increase in the contents of endogenous SA, as judged by the expression of OsWRKY45 (a SA responsive gene), and H2O2 in rice leaves. Diphenyleneiodonium (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented SA-increased H2O2 production, suggesting that NADPH oxidase is a H2O2-generating enzyme in SA-pretreated rice leaves. DPI and IMD also inhibited SA-increased activities of superoxide dismutase (SOD), ascorbate peroixdase (APX), and glutathione reductase (GR) activities, but had no effect on SA-increased catalase (CAT) activity. Moreover, SA-induced protection against subsequent Cd toxicity could also be prevented by DPI and IMD. The inhibitory effect of DPI and IMD on SA-induced protection against subsequent Cd toxicity could be reversed by exogenous H2O2. All these results suggested that SA-induced protection against subsequent Cd toxicity is mediated through H2O2. This conclusion is supported further by the observations that exogenous H2O2 application resulted in an increase in SOD, APX, and GR activities, but not CAT activity and a protection against subsequent Cd toxicity of rice leaves.  相似文献   

4.
Pea seedlings (Pisum sativum L.) were used as materials to test the timings and compartments of hydrogen peroxide (H2O2) triggered by wounding and exogenous jasmonic acid (JA). The results showed that H2O2 could be systemically induced by wounding and exogenous JA. H2O2 increased within 1 h and reached the peak 3–5 h after wounding in either the wounded leaves or the unwounded leaves adjacent to the wounded ones and the inferior leaves far from the wounded ones. After this, H2O2 decreased and recovered to the control level 12 h after wounding. The activities of antioxidant enzymes, however, were rapidly increased by wounding. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, could significantly inhibit H2O2 burst that was mediated by wounding and exogenous JA. Assay of H2O2 subcellular location showed that H2O2 in response to wounding and exogenous JA was predominantly accumulated in plasma membrane, cell wall and apoplasmic space. Numerous JA (gold particles) was found via immunogold electron microscopy to be located in cell wall and phloem zones of mesophyll cell after wounding.  相似文献   

5.
The present work aimed to investigate the mechanisms of nitric oxide (NO) and reactive oxygen species (ROS) generations and to explore their roles in the regulation of antioxidative responses in the wheat leaves under salinity. Except for an insignificant change of NO content and nitrate reductase (NR) activity due to 50 mM NaCl, NO, hydrogen peroxide, superoxide anion (O2?-), hydroxyl radical (?OH), chlorophyll and malondialdehyde content, as well as activities of nitric oxide synthase, NR, peroxidases (POD), catalase (CAT), and ascorbate peroxidase rose in response to different NaCl concentrations. Meanwhile, leaf superoxide dismutase activity lowered only at 50 mM NaCl. NaCl-stimulatory effects on NO content as well as POD and CAT activities could be partly alleviated by the application of 2-phenyl-4,4,5,5-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO, NO scavenger), exogenous CAT, or diphenylene iodonium (DPI, NADPH oxidase inhibitor). Native polyacrylamide gel electrophoresis also showed that the amount of POD (especially POD4, POD5, and POD7) and CAT (especially CAT1, CAT2, and CAT3) isozymes increased with increasing salinity but decreased by application of PTIO, CAT, or DPI. Furthermore, histochemical staining showed a similar change of O2?- generation. In addition, the inhibition of diamineoxidase (DAO), polyamine oxidase (PAO), and cell wall-bound POD (cw-POD) activities in NaCl-stressed seedlings seemed to be insensitive to the application of PTIO or DPI. Taken together, salinity-induced NO, H2O2, and O2?- generation influenced each other and played different roles in the regulation of antioxidant enzyme activities in the leaves of wheat seedlings under NaCl treatment.  相似文献   

6.
The role of H2O2 in the senescence of detached rice leaves induced by methyl jasmonate (MJ) was investigated. MJ treatment resulted in H2O2 production in detached rice leaves, which was prior to the occurrence of leaf senescence. Dimethylthiourea, a chemical trap of H2O2, was observed to be effective in inhibiting MJ‐induced senescence and MJ‐increased malondialdehyde (MDA) content in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented MJ‐induced H2O2 production, suggesting that NADPH oxidase is a H2O2‐generating enzyme in MJ‐treated detached rice leaves. DPI and IMD also inhibited MJ‐promoted senescence and MJ‐increased MDA content in detached rice leaves. Phosphatidylinositol 3‐kinase inhibitors wortmannin (WM) or LY 294002 (LY) inhibited MJ‐induced H2O2 production and senescence of detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY. In terms of leaf senescence, it was observed that rice seedlings of cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)‐sensitive and those of cultivar Tainung 67 (TNG67) are JA‐insensitive. On treatment with JA, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Evidence was also provided to show that MJ‐induced H2O2 production in detached rice leaves is abscisic acid (ABA)‐independent. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ‐ and ABA‐induced H2O2 production and senescence of detached rice leaves, suggesting that the action of MJ and ABA is ethylene‐dependent.  相似文献   

7.
The effect of regurgitant from Leptinotarsa decemlineata Say larvae on wound-induced responses was studied using two plant species, Solanum tuberosum L. and Phaseolus vulgaris L. Wounding of one leaf of intact S. tuberosum plants differentially affected ethylene production and activities of peroxidase and polyphenol oxidase. Only polyphenol oxidase activity was stimulated by wounding in both wounded and systemic leaves. Peroxidase activity was not affected by wounding. Wounding caused only a transient increase of ethylene production from wounded leaves. The application of regurgitant to wound surfaces stimulated ethylene production as well as activities of peroxidase and polyphenol oxidase in both wounded and systemic leaves. Wounding significantly enhanced ethylene production and polyphenol oxidase activity in wounded and systemic leaves of P. vulgaris . The application of regurgitant caused an amplification of ethylene production, peroxidase activity, and polyphenol oxidase activity, in both wounded and systemic leaves of bean plants. Several substances were tested for their role as possible endogenous signals in P. vulgaris . Hydrogen peroxide and methyl jasmonate appeared as potential local and systemic signals of ethylene formation in wounded bean plants. Local ethylene production in leaf discs was differentially affected by the regurgitant application in potato versus bean plants. While all tested concentrations of regurgitant caused stimulation of ethylene formation from potato leaf discs, ethylene production was completely inhibited by increasing concentrations of the regurgitant in bean leaf discs. Our data present evidence that ethylene may play an important role in the interaction between plants and herbivores at the level of recognition of a particular herbivore leading to specific induction of signalling cascades.  相似文献   

8.
The present study was aimed at understanding the effects of long term supplemental UV-B (3.6 kJ m?2 d?1) on biomass production, accumulation of reactive oxygen species, lipid peroxidation, and enzymatic antioxidants in leaves and roots of Withania somnifera (an indigenous medicinal plant). Under the UV-B treatment, a reduction in biomass and an increased malondialdehyde content (a characteristic of lipid peroxidation) were observed in both the shoots and roots. Amongst ROS, H2O2 content increased under UV-B in the leaves, whereas it decreased in the roots, and superoxide radical production rate decreased in both the plant parts. The activities of all enzymatic antioxidants tested (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) increased under the UV-B treatment, the increase being greater in the roots.  相似文献   

9.
研究过氧化氢内源消除剂和交替氧化酶专一性抑制剂影响渗透胁迫对水稻根系的伤害。结果表明:PEG 6000胁迫抑制了水稻幼根的生长,降低了相对含水量、增加了H2O2含量,并导致细胞死亡。用5 mmol·L-1二甲基硫脲(过氧化氢内源消除剂,dimethylthiourea,DMTU)预处理水稻幼根能明显降低PEG胁迫下水稻幼根过氧化氢的含量,缓解细胞死亡和相对含水量的降低,但对水稻根的生长影响较小。在PEG胁迫下,用1 mmol·L-1水杨基氧肟酸(交替氧化酶专一性抑制剂,salicylhydroxamic acid,SHAM)预处理水稻幼根能显著降低水稻幼根的生长和相对含水量,并增加水稻幼根的过氧化氢含量和细胞的死亡程度。这说明DMTU能缓解PEG胁迫对水稻根系伤害,而SHAM加剧了PEG胁迫对水稻根系伤害。  相似文献   

10.
Evidence for a senescence-associated gene induced by darkness   总被引:18,自引:3,他引:15       下载免费PDF全文
Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.  相似文献   

11.
The glycollate metabolism of wheat (Triticum vulgare Vill. cv. Sonalika) and rice (Oryza sativa L. ev. Jaya) leaves was studied during senescence by estimating the endogenous levels of glycollate and hydrogen peroxide (H2O2) and the activities of glycollate oxidase and catalase. In comparison with light incubation the incubation of excised leaves in the dark caused a decline in the glycollate content and in the activities of glycollate oxidase and catalase, and an increase in the H2O2 content, more marked in the leaves of rice than in the leaves of wheat. Glycollate oxidase activity gradually decreased with incubation time, and glycollate metabolism decreased during senescence. The glycollate oxidase in particular and glycollate metabolism of rice were more sensitive to incubation time than those of wheat. Kinetin increased the glycollate oxidase activity and glycollate metabolism during senescence, while ethrel (2-chloroethylpho-sphonic acid) and ABA (abscisic acid) reduced these activities in both plant species.  相似文献   

12.
In this report a full-length cDNA, SPCAT1, was isolated from ethephon-treated mature L3 leaves of sweet potato. SPCAT1 contained 1479 nucleotides (492 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 71.2-80.9%) with several plant catalases, including Arabidopsis, eggplant, grey mangrove, pea, potato, tobacco and tomato. Gene structural analysis showed that SPCAT1 encoded a catalase and contained a putative conserved internal peroxisomal targeting signal PTS1 motif and calmodulin binding domain around its C-terminus. RT-PCR showed that SPCAT1 gene expression was enhanced significantly in mature L3 and early senescent L4 leaves and was much reduced in immature L1, L2 and completely yellowing senescent L5 leaves. In dark- and ethephon-treated L3 leaves, SPCAT1 expression was significantly enhanced temporarily from 0 to 24 h, then decreased gradually until 72 h after treatment. SPCAT1 gene expression levels also exhibited approximately inverse correlation with the qualitative and quantitative H2O2 amounts. Effector treatment showed that ethephon-enhanced SPCAT1 expression was repressed by antioxidant reduced glutathione, NADPH oxidase inhibitor diphenylene iodonium (DPI), calcium ion chelator EGTA and de novo protein synthesis inhibitor cycloheximide. These data suggest that elevated reactive oxygen species H2O2, NADPH oxidase, external calcium influx and de novo synthesized proteins are required and associated with ethephon-mediated enhancement of sweet potato catalase SPCAT1 expression. Exogenous application of expressed catalase SPCAT1 fusion protein delayed or alleviated ethephon-mediated leaf senescence and H2O2 elevation. Based on these data we conclude that sweet potato SPCAT1 is an ethephon-inducible peroxisomal catalase, and its expression is regulated by reduced glutathione, DPI, EGTA and cycloheximide. Sweet potato catalase SPCAT1 may play a physiological role or function in cope with H2O2 homeostasis in leaves caused by developmental cues and environmental stimuli.  相似文献   

13.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

14.
In response to Clostera anachoreta larvae attack, poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) leaves produced a high level of hydrogen peroxide (H2O2). Histochemical localization revealed that H2O2 was mainly localized in herbivore-wounded zones and might spread through the veins. The activities of three H2O2-scavenging enzymes, i.e., peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), were also enhanced in herbivore-wounded leaves, and exhibited an opposite pattern to the accumulation of H2O2. It was found that diphenylene iodonium chloride (DPI, a special inhibitor of NADPH oxidase) treatment significantly inhibited the accumulation of H2O2 induced by herbivory damage. Moreover, DPI treatment led to an obvious decrease in the activities of POD, APX, and CAT. The results indicated that NADPH oxidase contributed to the accumulation of H2O2 and the increase in activities of H2O2-scavenging enzymes in poplar leaves induced by herbivory damage. The balance between H2O2-production pathway and H2O2-scavenging enzymes led to the tolerable level of H2O2 acting in P. simonii × P. pyramidalis ‘Opera 8277’ cuttings in response to herbivory damage.  相似文献   

15.
In an isolated, normothermic rat heart model (Langendorff, 37 °C), dimethylthiourea (DMTU) infusion only during reperfusion reduced both injury and measurable hydrogen peroxide (H2O2) concentrations after global ischemia. Cardiac function was assessed by measurement of ventricular developed pressure (DP). H2O2 was assessed using H2O2 dependent aminotriazole inactivation of myocardial catalase. Depletion of xanthine oxidase by two methods (tungsten or allopurinol inhibition) also improved recovery of function and H2O2 production. The results indicate that XO derived H2O2 contributes to myocardial reperfusion injury.  相似文献   

16.
Cadmium-induced initial changes in the production of reactive oxygen species (ROS) and antioxidant mechanism were investigated in soybean (Glycine max L. cv. Don Mario 4800 RR) leaves. Whole plants (WP) and plants without roots (PWR) were exposed to 0.0, 10.0 and 40.0 μM Cd for 0, 4, 6 and 24 h. Compared to PWR, a higher level of endogenous Cd in WP was associated with a lower oxidative stress measured in terms of lipid peroxidation. Furthermore, O2 •− content decreased in the leaves of Cd-treated WP, whereas it increased in those of Cd-treated PWR. Although O2 •− accumulation in PWR was associated with a decrease in superoxide dismutase (SOD) activity, O2 •− diminution in WP leaves was not related to any increase in SOD activity. H2O2 content increased in the leaves of both Cd-treated WP and PWR, and it was concomitant with a corresponding decline in catalase (CAT) and ascorbate peroxidase (APX) activities. When diphenyl iodonium (DPI), an inhibitor of NADPH oxidase, was added, H2O2 content remained unchanged in Cd-treated WP, suggesting that NADPH oxidase does not participate in the early hours of Cd toxicity. Taken together, our results showed that early ROS evolution and oxidative damage were different in WP and PWR. This suggests that the response in soybean leaves during the early hours of Cd toxicity is probably modulated by the root.  相似文献   

17.
Ethephon, an ethylene releasing compound, promoted leaf senescence, H2O2 elevation, and senescence-associated gene expression in sweet potato. It also affected the glutathione and ascorbate levels, which in turn perturbed H2O2 homeostasis. The decrease of reduced glutathione and the accumulation of dehydroascorbate correlated with leaf senescence and H2O2 elevation at 72 h in ethephon-treated leaves. Exogenous application of reduced glutathione caused quicker and significant increase of its intracellular level and resulted in the attenuation of leaf senescence and H2O2 elevation. A small H2O2 peak produced within the first 4 h after ethephon application was also eliminated by reduced glutathione. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, delayed leaf senescence and H2O2 elevation at 72 h, and its influence was effective only within the first 4 h after ethephon treatment. Ethephon-induced senescence-associated gene expression was repressed by DPI and reduced glutathione at 72 h in pretreated leaves. Leaves treated with l-buthionine sulfoximine, an endogenous glutathione synthetase inhibitor, did enhance senescence-associated gene expression, and the activation was strongly repressed by reduced glutathione. In conclusion, ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression are all alleviated by reduced glutathione and NADPH oxidase inhibitor DPI. The speed and the amount of intracellular reduced glutathione accumulation influence its effectiveness of protection against ethephon-mediated effects. Reactive oxygen species generated from NADPH oxidase likely serves as an oxidative stress signal and participates in ethephon signaling. The possible roles of NADPH oxidase and reduced glutathione in the regulation of oxidative stress signal in ethephon are discussed.  相似文献   

18.
19.
Abscisic acid (ABA) and hydrogen peroxide (H2O2) are important regulatory factors involved in plant development under adversity stress. Here, the involvement of H2O2 in ABA-induced adventitious root formation in cucumber (Cucumis sativus L.) under drought stress was determined. The results indicated that exogenous ABA or H2O2 promoted adventitious rooting under drought stress, with a maximal biological response at 0.5 μM ABA or 800 μM H2O2. The promotive effects of ABA-induced adventitious rooting under drought stress were suppressed by CAT or DPI, suggesting that endogenous H2O2 might be involved in ABA-induced adventitious rooting. ABA increased relative water content (RWC), leaf chlorophyll content, chlorophyll fluorescence parameters (Fv/Fm, ΦPS II and qP), water soluble carbohydrate (WSC) and soluble protein content, and peroxidase (POD), polyphenol oxidase (PPO) and indoleacetate oxidase (IAAO) activities, while decreasing transpiration rate. However, the effects of ABA were inhibited by H2O2 scavenger CAT. Therefore, H2O2 may be involved in ABA-induced adventitious root development under drought stress by stimulating water and chlorophyll content, chlorophyll fluorescence, carbohydrate and nitrogen content, as well as some enzyme activities.  相似文献   

20.
The production of H2O2 in detached rice leaves of Taichung Native 1 (TN1) caused by CdCl2 was investigated. CdCl2 treatment resulted in H2O2 production in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase (NOX), prevented CdCl2-induced H2O2 production, suggesting that NOX is a H2O2-genearating enzyme in CdCl2-treated detached rice leaves. Phosphatidylinositol 3-kinase inhibitors wortmanin (WM) or LY294002 (LY) inhibited CdCl2-inducted H2O2 production in detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY, suggesting that phosphatidylinositol 3-phosphate is required for Cd-induced H2O2 production in detached rice leaves. Nitric oxide donor sodium nitroprusside (SNP) was also effective in reducing CdCl2-inducing accumulation of H2O2 in detached rice leaves. Cd toxicity was judged by the decrease in chlorophyll content. The results indicated that DPI, IMD, WM, LY, and SNP were able to reduce Cd-induced toxicity of detached rice leaves. Twelve-day-old TN1 and Tainung 67 (TNG67) rice seedlings were treated with or without CdCl2. In terms of Cd toxicity (leaf chlorosis), it was observed that rice seedlings of cultivar TN1 are Cd-sensitive and those of cultivar TNG67 are Cd-tolerant. On treatment with CdCl2, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Prior exposure of TN1 seedlings to 45oC for 3 h resulted in a reduction of H2O2 accumulation, as well as Cd tolerance of TN1 seedlings treated with CdCl2. The results strongly suggest that Cd toxicity of detached leaves and leaves attached to rice seedlings are due to H2O2 accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号