首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Agrometeorological department of Meteorological Office at Slovenian Environment Agency (ARSO) is a key provider of agrometeorological service in Slovenia. Its major priority is to manage agrometeorological and phenological networks including providing guidelines for observers and maintenance of databases. Agrometeorological and phenological data are foundation for several tools and analyses which have been developed during the past decades for agricultural decision purposes. Recently, focus is on the crop water balance modelling with irrigation forecasts, drought monitoring, climate change impact scenarios and many others. After year 2006 special work emphasis is on coordination of Drought Management Center for South-eastern Europe hosted by ARSO. A set of information, tools and publications, bulletins is free available at the webpage and servers of ARSO with the aim to make smarter weather/climate related decisions in agriculture.  相似文献   

3.
Vegetation phenology, the study of the timing and length of the terrestrial growing season and its connection to climate, is increasingly important in integrated Earth system science. Phenological variability is an excellent barometer of short‐ and long‐term climatic variability, strongly influences surface meteorology, and may influence the carbon cycle. Here, using the 1895–1993 Vegetation/Ecosystem Modelling and Analysis dataset and the Biome‐BGC terrestrial ecosystem model, we investigated the relationship between phenological metrics and annual net ecosystem exchange (NEE) of carbon. For the 1167 deciduous broad leaf forest pixels, we found that NEE was extremely weakly related to canopy duration (days from leaf appearance to complete leaf fall). Longer canopy duration, did, however, sequester more carbon if warm season precipitation was above average. Carbon uptake period (number of days with net CO2 uptake from the atmosphere), which integrates the influence of all ecosystem states and processes, was strongly related to NEE. Results from the Harvard Forest eddy‐covariance site supported our findings. Such dramatically different results from two definitions of ‘growing season length’ highlight the potential for confusion among the many disciplines engaged in phenological research.  相似文献   

4.
An overview is presented of the phenological models relevant for boreal coniferous, temperate-zone deciduous and Mediterranean coniferous forest ecosystems. The phenology of the boreal forests is mainly driven by temperature, affecting the timing of the start of the growing season and thereby its duration, and the level of frost hardiness and thereby the reduction of foliage area and photosynthetic capacity by severe frost events. The phenology of temperate-zone forests is also mainly driven by temperature. Since temperate-zone forests are mostly mixed-species deciduous forests, differences in phenological response may affect competition between tree species. The phenology of Mediterranean coniferous forests is mainly driven by water availability, affecting the development of leaf area, rather than the timing of phenological events. These phenological models were subsequently coupled to the process-based forest model FORGRO to evaluate the effect of different climate change scenarios on growth. The results indicate that the phenology of each of the forest types significantly affects the growth response to a given climate change scenario. The absolute responses presented in this study should, however, be used with caution as there are still uncertainties in the phenological models, the growth models, the parameter values obtained and the climate change scenarios used. Future research should attempt to reduce these uncertainties. It is recommended that phenological models that describe the mechanisms by which seasonality in climatic drivers affects the phenological aspects of trees should be developed and carefully tested. Only by using such models may we make an assessment of the impact of climate change on the functioning and productivity of different forest ecosystems. Received: 21 October 1999 / Revised: 10 May 2000 / Accepted: 10 May 2000  相似文献   

5.
全球变化下植物物候研究的关键问题   总被引:4,自引:1,他引:3  
总结了全球变化下植物物候研究的主要进展,针对该领域国内外的几个热点问题进行了讨论。植物物候研究的重心从以前的野外观测和初步统计分析逐步过渡到以揭示物候周期的调控机制和环境效应为主,研究手段从植物物候对环境变化做出反应的表象描述转移到多尺度、多要素耦合关系的综合分析。随着学科交叉研究的不断深入,植物物候研究从植物个体及居群适应性研究转向植物物候变化对生态系统、气候演变、农业生产乃至人类健康等方面影响的系统评估。并且在该转变过程中出现了几个关键性问题,如不同温度带大气温度与光周期对植物物候期贡献力问题、植物物候变化对气候变暖的非线性响应特征、群落水平上植物物候研究的复杂性、以及农业生态系统中作物物候研究的重要性等。对我国植物物候研究现状和管理体系中亟待解决的问题提出了建议。  相似文献   

6.
Climate change can affect plant–pollinator interactions in a variety of ways, but much of the research attention has focused on whether independent shifts in phenology will alter temporal overlap between plants and pollinators. Here I review the research on plant–pollinator mismatch, assessing the potential for observational and experimental approaches to address particular aspects of the problem. Recent, primarily observational studies suggest that phenologies of co‐occurring plants and pollinators tend to respond similarly to environmental cues, but that nevertheless, certain pairs of interacting species are showing independent shifts in phenology. Only in a few cases, however, have these independent shifts been shown to affect population vital rates (specifically, seed production by plants) but this largely reflects a lack of research. Compared to the few long‐term studies of pollination in natural plant populations, experimental manipulations of phenology have yielded relatively optimistic conclusions about effects of phenological shifts on plant reproduction, and I discuss how issues of scale and frequency‐dependence in pollinator behaviour affect the interpretation of these ‘temporal transplant’ experiments. Comparable research on the impacts of mismatch on pollinator populations is so far lacking, but both observational studies and focused experiments have the potential to improve our forecasts of pollinator responses to changing phenologies. Finally, while there is now evidence that plant–pollinator mismatch can affect seed production by plants, it is still unclear whether this phenological impact will be the primary way in which climate change affects plant–pollinator interactions. It would be useful to test the direct effects of changing climate on pollinator population persistence, and to compare the importance of phenological mismatch with other threats to pollination.  相似文献   

7.
沈阳城市森林常见树种的物候特征   总被引:2,自引:0,他引:2  
胡健波  徐文铎  陈玮  何兴元  闻华 《生态学杂志》2006,25(12):1455-1459
城市绿化树种的物候配置是城市园林的一个重要组成部分。本文以沈阳城市森林常见树种为对象,利用6年的物候观测数据,绘出了28种主要乔灌木的物候谱。分析各物候现象之间关系,将其划分成4大组:萌动展叶现象组、叶变色现象组、落叶现象组和花果现象组;并根据叶变色和开花早晚对其进行聚类分组,为城市森林树种选择、树种组成和效益评价,提供科学依据。  相似文献   

8.
Abstract. A new, computerized method is presented for the survey and analysis of phenological data on the vegetative cycle of tree species in complex forest structures. It is based on the principles of classical phenology, phytosociological sampling techniques and the main concepts of growth analysis. The method considers the development of phenological phases as a stochastic process, and allows a quantitative and mathematical-statistical comparisonbetweenphenorhythms of trees and crown sections, and correlations with environmental variables.  相似文献   

9.
鼎湖山人工松林生态系统蒸散力及计算方法的比较   总被引:9,自引:0,他引:9  
Based on the consecutive measurement (1995-1997) of meteorology and microclimate of artificial Pinus forest in Mount Dinghu, we calculated the potential evapotranspiration by using four different methods to discuss the method which is fit for forest ecosystem. The results are given as follows.1) In terms of the enviromental conditions of forest ecosystem, we redefined some parameters in Penman equation and used it to calculate the potential evapotranspiration of artificial Pinus forest ecosystem in Mount Dinghu.Preliminary result is that Penman equation is worth spreading for calculating the potential evapotranspiration of forest ecosystem,compared with several other methods.2) The annual average potential evapotranspiration of the artificial Pinus forest in Mount Dinghu is 937.55mm,according to Penman equation. It is 50% of the rainfall in the corresponding period. The highest mean monthly potential evapotranspiration is July and the lowest mean monthly potential evapotranspiration is January. This is completely consistent with the variations of temperature.  相似文献   

10.
Considering the importance of ecological and biological traits in imparting invasive success to the alien species, the phenological behaviour of an alien invasive weed Parthenium hysterophorus was documented according to the extended BBCH scale in four different seasons. A phenological calendar was prepared using both two‐ and three‐ digit coding system, precisely describing the developmental stages of the weed. The phenological documentation is further supplemented with the dates corresponding to a particular growth stage, pictures of the representative growth stages and meteorological data of all the four seasons. Results revealed that the phenology of the weed altered in response to the changing temperature and humidity conditions but no apparent climatic condition could inhibit its germination or flowering. However, the emergence of inflorescence was highly sensitive to the temperature/photoperiodic conditions. Variations in the phenological traits of P. hysterophorus with changing environmental conditions explain the acclimatisation potential of the weed permitting its vast spread in the non‐native regions. Since the given phenological illustrations are accurate, unambiguous and coded as per an internationally recognised scale, they could be exploited for agronomic practices, weed management programmes, and research purposes.  相似文献   

11.
植物物候学研究进展   总被引:8,自引:2,他引:6  
代武君  金慧颖  张玉红  周志强  刘彤 《生态学报》2020,40(19):6705-6719
植物物候变化在研究陆地生态系统对气候变化的响应时被誉为"矿井中的金丝雀",全球气候变化愈演愈烈,重新引起了人们对植物物候研究的广泛关注。随着观测技术的发展,在各种空间和生态尺度上收集到的物候观测数据迅速累积,尽管已经在多个尺度上(物种、群落和景观尺度)观察到物候变化,但物候变化的机理仍然没有得到很好的理解。回顾了国内外植物物候研究的发展历程;总结了物候数据收集技术进展和全球物候变化的主要趋势;归纳了植物物候变化的机理与驱动因素;探讨了物候模型研究及物候对气候变化响应研究的主要方向。随着物候观测技术在不同尺度上应用的增加,物候研究进入了一个新的阶段。未来物候研究需要制定跨区域标准化观测指南,融合所有相关学科,改进物候模型,拓展研究区域;同时融合有效的历史物候资料,采用新技术和长期收集的物候数据为大数据时代植物物候学研究提供基础。  相似文献   

12.
Quantification of diarrhea risk related to wastewater contact in Thailand   总被引:2,自引:0,他引:2  
Wastewater reuse contributes to closing the nutrient recycling loop as a sustainable way of managing water resources. Bangkok has over a thousand man-made drainage and irrigation canals for such purposes. Its use for agricultural and recreational purposes has a long tradition in rural and peri-urban areas. However, the continuation of these practices is increasingly questioned since potential health risks are an issue if such practices are not appropriately managed. The microbial and chemical quality of canal water has considerably deteriorated over the last decade, mainly because of discharged, untreated domestic and industrial wastewater. It is important to understand the health risks of wastewater reuse and identify risky behaviors from the most highly exposed actors promote the safe use of wastewater. This study assessed diarrhea infection risks caused by the use of and contact with wastewater in Klong Luang municipality, a peri-urban setting in Northern Bangkok, using quantitative microbial risk assessment. Wastewater samples were collected from canals, sewers at household level, and vegetables grown in the canals for consumption. Samples were also collected from irrigation water from the agricultural fields. Two protozoa, Giardia lamblia and Entamoeba histolytica, were quantified and analyzed by real-time PCR, exposure assessment was conducted, and finally, the risk of infection due to contact with wastewater in different scenarios was calculated. The results showed that canal water and vegetables were heavily contaminated with G. lamblia and E. histolytica. Infection risk was high in tested scenarios and largely exceeded the acceptable risk given by WHO guidelines.  相似文献   

13.
橡胶树(Heveabrasiliensis)是广布于热带地区的经济林木,是战略物资天然橡胶的主要来源,其物候学的研究对胶园生产管理和评估热带地区植被对全球气候变化的响应方面具有重要意义。早期的物候研究主要服务于苗木繁育、割胶规划和抗逆栽培等生产应用;利用遥感监测植被物候日趋成熟,已广泛应用于橡胶树并成为主流的物候监测方法;橡胶树物候具有明显的时空异质性,对气候变化的响应较为复杂,其中温度和降水是关键影响因子,同时内因(品系、基因和树龄等)和外因(种植密度、地理位置和农业措施等)也共同影响了其物候。为更好服务天然橡胶产业的可持续发展和热区气候变化科学研究,未来的橡胶树物候研究应重点关注多源遥感数据的协同重建、物候指标提取算法的普适化和遥感预测模型的精准化。该文系统梳理了橡胶树物候的监测方法、服务价值、时空格局,提出了存在问题及未来研究方向。  相似文献   

14.
Species range displacements owing to shifts in temporal associations between trophic levels are expected consequences of climate warming. Climate‐induced range expansions have been shown for two irruptive forest defoliators, the geometrids Operophtera brumata and Epirrita autumnata, causing more extensive forest damage in sub‐Arctic Fennoscandia. Here, we document a rapid northwards expansion of a novel irruptive geometrid, Agriopis aurantiaria, into the same region, with the aim of providing insights into mechanisms underlying the recent geometrid range expansions and subsequent forest damage. Based on regional scale data on occurrences and a quantitative monitoring of population densities along the invasion front, we show that, since the first records of larval specimens in the region in 1997–1998, the species has spread northwards to approximately 70°N, and caused severe defoliation locally during 2004–2006. Through targeted studies of larval phenology of A. aurantiaria and O. brumata, as well as spring phenology of birch, along meso‐scale climatic gradients, we show that A. aurantiaria displays a similar dynamics and development as O. brumata, albeit with a consistent phenological lag of 0.75–1 instar. Experiments of the temperature requirements for egg hatching and for budburst in birch showed that this phenological lag is caused by delayed egg hatching in A. aurantiaria relative to O. brumata. A. aurantiaria had a higher development threshold (LDTA.a.=4.71 °C, LDTO.b.=1.41 °C), and hatched later and in less synchrony with budburst than O. brumata at the lower end of the studied temperature range. We can conclude that recent warmer springs have provided phenological match between A. aurantiaria and sub‐Arctic birch which may intensify the cumulative impact of geometrid outbreaks on this forest ecosystem. Higher spring temperatures will increase spring phenological synchrony between A. aurantiaria and its host, which suggests that a further expansion of the outbreak range of A. aurantiaria can be expected.  相似文献   

15.
The study of vegetation phenology is important because it is a sensitive indicator of climate changes and it regulates carbon, energy and water fluxes between the land and atmosphere. Africa, which has 17% of the global forest cover, contributes significantly to the global carbon budget and has been identified as potentially highly vulnerable to climate change impacts. In spite of this, very little is known about vegetation phenology across Africa and the factors regulating vegetation growth and dynamics. Hence, this review aimed to provide a synthesis of studies of related Africa's vegetation phenology and classify them based on the methods and techniques used in order to identify major research gaps. Significant increases in the number of phenological studies in the last decade were observed, with over 70% of studies adopting a satellite-based remote sensing approach to monitor vegetation phenology. Whereas ground based studies that provide detailed characterisation of vegetation phenological development, occurred rarely in the continent. Similarly, less than 14% of satellite-based remote sensing studies evaluated vegetation phenology at the continental scale using coarse spatial resolution datasets. Even more evident was the lack of research focusing on the impacts of climate change on vegetation phenology. Consequently, given the importance and the uniqueness of both methods of phenological assessment, there is need for more ground-based studies to enable greater understanding of phenology at the species level. Likewise, finer spatial resolution satellite sensor data for regional phenological assessment is required, with a greater focus on the relationship between climate change and vegetation phenological changes. This would contribute greatly to debates over climate change impacts and, most importantly, climate change mitigation strategies.  相似文献   

16.
空气负离子(Negative air ion, NAI)是衡量空气质量的重要指标之一,受到植被和环境的共同影响。然而,森林生态系统作为NAI产生的重要来源,森林中的植被和环境之间的相互作用以及对NAI的影响机制和贡献潜力仍难以捉摸。以暖温带森林生态系统中广泛分布的栓皮栎(Quercus variabilis BI.)为对象,基于自动观测设备长期定位观测获取了气象、土壤性质、空气洁净度以及植被光合等数据,利用皮尔逊相关系数分析和偏最小二乘结构方程模型分析了森林植被和环境要素对NAI的影响机制和贡献潜力。结果表明,环境要素和植被光合对NAI的贡献差异显著,植被光合对NAI的贡献潜力为62.65%,环境要素对NAI的贡献率为37.35%。环境要素中太阳辐射和饱和水汽压差的影响程度最大,分别为68.94%和16.55%。植被光合和PM2.5主要通过直接效应影响NAI,而光合有效辐射、紫外辐射、土壤温湿度和饱和水汽压差主要通过间接效应影响NAI。因此,利用结构方程模型可以阐明植被光合与环境要素的变化对NAI的影响趋势,从而全面揭示了森林生态系统中植被产生NAI的作用机制以及...  相似文献   

17.
Summary A more scientific approach to agriculture generally, coupled with the interest of the emergent nations of the world in a planned rural development, has led to a boom in agricultural meteorology. Major developments include an improvement in interdisciplinary communication at both the national and international level, a move toward standardization with the publication of the WMO GUIDE TO AGRICULTURAL METEOROLOGICAL PRACTICES, and the application of the principles of agroclimatic classification, in a pilot project, to the arid and semi-arid zones of the Near East. Other advances are recorded in such questions as the responses of crops and farm animals to weather conditions, the forecasting of agricultural diseases and pests, and the effect of environmental factors on the storage of agricultural products. An intensified research effort is being devoted to long-term weather forecasting for agriculture,and to questions of soil moisture balance.  相似文献   

18.
Many invasive plants originate as cultivated species. The growing demand for renewable energy has stimulated agricultural production of native and non-native perennial grasses, but little is known about their potential to become invasive outside cultivation, particularly at the early establishment phase. We evaluated effects of propagule pressure and establishment limitations for early establishment of four potential bioenergy grasses in agricultural field margins and forest understory across a 6.3° latitudinal gradient (Ontario, Canada; Illinois and Virginia, USA). We used multiple seed introductions in different years and followed their fate for up to three growing seasons. High interannual variability in establishment indicates that the frequency of propagule introduction is important for invasion outside cultivation. Establishment limitations were stronger in forest than field margins; of 328,800 seeds added, only 1 of 505 persisting seedlings occurred in forest. Removal of competing vegetation had small and variable effects on establishment among sites and species. Unlike previous short-term experiments, our results indicate the potential for the persistence of these bioenergy grasses in both vegetation and seed bank, and highlight the importance of long-term experiments in evaluating invasion risk.  相似文献   

19.
物候模型研究进展   总被引:12,自引:0,他引:12  
近年来随着全球气候变暖,物候提前,物候学的研究越来越受到人们的关注.通过建立物候模型使物候期的预知成为可能,从而为生产实践活动提供依据和指导.本文探讨了物候模型研究的意义,总结了影响植物和昆虫物候的温度、水分、光和养分等主要环境因子的作用.根据国内外物候模型的研究现状,重点介绍了作物、树木、植被和昆虫4类物候模型的研究内容和进展.作物物候模型注重生理生态过程;树木物候模型以统计方法为主,但近期也有尝试将激素水平作为物候的决定因素;植被物候模型以遥感技术的应用为发展趋势;昆虫物候模型则进一步对发育起点的确定和对温度因子的修正,GIS的引入将昆虫物候模型的应用范围扩大.最后指出了目前物候模型研究中存在的问题.  相似文献   

20.
Phenology affects nearly all aspects of ecology and evolution. Virtually all biological phenomena—from individual physiology to interspecific relationships to global nutrient fluxes—have annual cycles and are influenced by the timing of abiotic events. Recent years have seen a surge of interest in this topic, as an increasing number of studies document phenological responses to climate change. Much recent research has addressed the genetic controls on phenology, modelling techniques and ecosystem-level and evolutionary consequences of phenological change. To date, however, these efforts have tended to proceed independently. Here, we bring together some of these disparate lines of inquiry to clarify vocabulary, facilitate comparisons among habitat types and promote the integration of ideas and methodologies across different disciplines and scales. We discuss the relationship between phenology and life history, the distinction between organismal- and population-level perspectives on phenology and the influence of phenology on evolutionary processes, communities and ecosystems. Future work should focus on linking ecological and physiological aspects of phenology, understanding the demographic effects of phenological change and explicitly accounting for seasonality and phenology in forecasts of ecological and evolutionary responses to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号