首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PTEN hamartoma tumor syndrome (PHTS) is a complex disorder caused by germline inactivating mutations of the tumor suppressor gene PTEN. Loss of PTEN function leads to unimpeded phosphatidylinositol-3′-kinase (PI3K) activity and PI3K-driven cell division. Individuals with PHTS develop benign hamartomas in various tissues and have an increased risk of developing malignant diseases. Notably, no effective therapy currently exists for this disorder. Using both genetic mouse models and pharmacological approaches, we recently demonstrated that PI3K p110α and p110β isoforms play spatially distinct but concerted roles in the skin that are required for the development and maintenance of PHTS. We also show that treatment with a pan-PI3K inhibitor prevents the development of skin PHTS and reverses advanced-stage skin hamartomas in vivo. Here, we report that genetic ablation of only 3 out of 4 p110 alleles is sufficient to block the development of skin hamartomas resulting from the complete loss of Pten in mice. Similar to our findings in skin, we now also show that mammary gland neoplastic lesions can be prevented or reversed upon PI3K inhibition in our PHTS mouse model. Our data suggest a possible route to chemoprevention using reduced doses of PI3K inhibitors for PTEN-deficient carrier patients.  相似文献   

2.
Individuals with PTEN mutations have Cowden syndrome (CS), associated with breast, thyroid, and endometrial neoplasias. Many more patients with features of CS, not meeting diagnostic criteria (termed CS-like), are evaluated by clinicians for CS-related cancer risk. Germline mutations in succinate dehydrogenase subunits SDHB-D cause pheochromocytoma-paraganglioma syndrome. One to five percent of SDHB/SDHD mutation carriers have renal cell or papillary thyroid carcinomas, which are also CS-related features. SDHB-D may be candidate susceptibility genes for some PTEN mutation-negative individuals with CS-like cancers. To address this hypothesis, germline SDHB-D mutation analysis in 375 PTEN mutation-negative CS/CS-like individuals was performed, followed by functional analysis of identified SDH mutations/variants. Of 375 PTEN mutation-negative CS/CS-like individuals, 74 (20%) had increased manganese superoxide dismutase (MnSOD) expression, a manifestation of mitochondrial dysfunction. Among these, 10 (13.5%) had germline mutations/variants in SDHB (n = 3) or SDHD (7), not found in 700 controls (p < 0.001). Compared to PTEN mutation-positive CS/CS-like individuals, those with SDH mutations/variants were enriched for carcinomas of the female breast (6/9 SDH versus 30/107 PTEN, p < 0.001), thyroid (5/10 versus 15/106, p < 0.001), and kidney (2/10 versus 4/230, p = 0.026). In the absence of PTEN alteration, CS/CS-like-related SDH mutations/variants show increased phosphorylation of AKT and/or MAPK, downstream manifestations of PTEN dysfunction. Germline SDH mutations/variants occur in a subset of PTEN mutation-negative CS/CS-like individuals and are associated with increased frequencies of breast, thyroid, and renal cancers beyond those conferred by germline PTEN mutations. SDH testing should be considered for germline PTEN mutation-negative CS/CS-like individuals, especially in the setting of breast, thyroid, and/or renal cancers.  相似文献   

3.
Cowden syndrome (CS) is a difficult-to-recognize multiple hamartoma syndrome with high risks of breast, thyroid, and other cancers. Germline mutations in PTEN on 10q23 were found to cause 85% of CS when accrued from tertiary academic centers, but prospective accrual from the community over the last 12 years has revealed a 25% PTEN mutation frequency. PTEN is the phosphatase that has been implicated in a heritable cancer syndrome and subsequently in multiple sporadic cancers and developmental processes. PTEN antagonizes the AKT1/PI3K signaling pathway and has roles in cell cycle, migration, cell polarity, and apoptosis. We report that 8 of 91 (8.8%) unrelated CS individuals without germline PTEN mutations carried 10 germline PIK3CA mutations (7 missense, 1 nonsense, and 2 indels) and 2 (2.2%) AKT1 mutations. These mutations result in significantly increased P-Thr308-AKT and increased cellular PIP3. Our observations suggest that PIK3CA and AKT1 are CS susceptibility genes.  相似文献   

4.
PTEN is one of the most frequently altered tumor suppressor genes in malignant tumors. The dominant-negative effect of PTEN alteration suggests that the aberrant function of PTEN mutation might be more disastrous than deletion, the most frequent genomic event in glioblastoma (GBM). This study aimed to understand the functional properties of various PTEN missense mutations and to investigate their clinical relevance. The genomic landscape of PTEN alteration was analyzed using the Samsung Medical Center GBM cohort and validated via The Cancer Genome Atlas dataset. Several hotspot mutations were identified, and their subcellular distributions and phenotypes were evaluated. We established a library of cancer cell lines that overexpress these mutant proteins using the U87MG and patient-derived cell models lacking functional PTEN. PTEN mutations were categorized into two major subsets: missense mutations in the phosphatase domain and truncal mutations in the C2 domain. We determined the subcellular compartmentalization of four mutant proteins (H93Y, C124S, R130Q, and R173C) from the former group and found that they had distinct localizations; those associated with invasive phenotypes (‘edge mutations’) localized to the cell periphery, while the R173C mutant localized to the nucleus. Invasive phenotypes derived from edge substitutions were unaffected by an anti-PI3K/Akt agent but were disrupted by microtubule inhibitors. PTEN mutations exhibit distinct functional properties regarding their subcellular localization. Further, some missense mutations (‘edge mutations’) in the phosphatase domain caused enhanced invasiveness associated with dysfunctional cytoskeletal assembly, thus suggesting it to be a potent therapeutic target.Subject terms: Cancer, Oncogenes  相似文献   

5.
Biallelic germline mutations of MUTYH—a gene encoding a base excision repair protein—are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of risk. As the MUTYH protein interacts with the mismatch repair (MMR) system, we hypothesised that the combination of a monoallelic MUTYH mutation with an MMR gene mutation increases cancer risk. We therefore investigated the prevalence of monoallelic MUTYH mutations in carriers of a germline MMR mutation: 40 carriers of a truncating mutation (group I) and 36 of a missense mutation (group II). These patients had been diagnosed with either colorectal or endometrial cancer. We compared their MUTYH mutation frequencies with those observed in a group of 134 Dutch colorectal and endometrial cancer patients without an MMR gene mutation (0.7%) and those reported for Caucasian controls (1.5%). In group I one monoallelic MUTYH mutation was found (2.5%). In group II five monoallelic germline MUTYH mutations were found (14%), four of them in MSH6 missense mutation carriers (20%). Of all patients with an MMR gene mutation, only those with a missense mutation showed a significantly higher frequency of (monoallelic) MUTYH mutations than the Dutch cancer patients without MMR gene mutations (P=0.002) and the published controls (P=0.001). These results warrant further study to test the hypothesis of mutations in MMR genes (in particular MSH6) and MUTYH acting together to increase cancer risk.  相似文献   

6.

Background  

Germline mutations in the tumor suppressor PTEN predispose human beings to breast cancer, and genetic and epigenetic alterations of PTEN are also detected in sporadic human breast cancer. Germline Pten mutations in mice lead to the development of a variety of tumors, but mammary carcinomas are infrequently found, especially in mice under the age of six months.  相似文献   

7.
Although the association of germline BRCA2 mutations with pancreatic adenocarcinoma is well established, the role of BRCA1 mutations is less clear. We hypothesized that the loss of heterozygosity at the BRCA1 locus occurs in pancreatic cancers of germline BRCA1 mutation carriers, acting as a “second-hit” event contributing to pancreatic tumorigenesis. Seven germline BRCA1 mutation carriers with pancreatic adenocarcinoma and nine patients with sporadic pancreatic cancer were identified from clinic- and population-based registries. DNA was extracted from paraffin-embedded tumor and nontumor samples. Three polymorphic microsatellite markers for the BRCA1 gene, and an internal control marker on chromosome 16p, were selected to test for the loss of heterozygosity. Tumor DNA demonstrating loss of heterozygosity in BRCA1 mutation carriers was sequenced to identify the retained allele. The loss of heterozygosity rate for the control marker was 20%, an expected baseline frequency. Loss of heterozygosity at the BRCA1 locus was 5/7 (71%) in BRCA1 mutation carriers; tumor DNA was available for sequencing in 4/5 cases, and three demonstrated loss of the wild-type allele. Only 1/9 (11%) sporadic cases demonstrated loss of heterozygosity at the BRCA1 locus. Loss of heterozygosity occurs frequently in pancreatic cancers of germline BRCA1 mutation carriers, with loss of the wild-type allele, and infrequently in sporadic cancer cases. Therefore, BRCA1 germline mutations likely predispose to the development of pancreatic cancer, and individuals with these mutations may be considered for pancreatic cancer-screening programs.  相似文献   

8.
Undergraduate laboratory exercises addressing aspects of cancer biology such as increased cell proliferation, gain-of-function signaling mutations and tumour formation often rely on tissue culture or even small mammal models. Many departments have limited or no access to these tools, and even well-equipped departments face logistical problems when incorporating these models into laboratory classes. I have developed a laboratory exercise using the microscopic worm, C. elegans, to demonstrate the effects of Notch receptor mutations on cell proliferation. Notch, which is activated by juxtacrine signaling, is mutated in many human cancers. In this exercise, students compare the germline phenotypes of worms that have a loss-of-function Notch mutation (no cells in the germline) or a gain-of-function Notch mutation (over-proliferation resulting in a germline tumour). Students also genotype the worms and perform sequence analysis to determine the effects of the mutations on the protein sequence. This laboratory exercise demonstrates oncogenic proliferation, correlates genotype to phenotype, exposes students to model organisms and introduces sequence databases and analysis. In addition to cancer biology courses, this exercise could be incorporated in courses with a focus on genetics, cell biology or developmental biology.  相似文献   

9.
De novo mutation is highly implicated in autism spectrum disorder (ASD). However, the contribution of post-zygotic mutation to ASD is poorly characterized. We performed both exome sequencing of paired samples and analysis of de novo variants from whole-exome sequencing of 2,388 families. While we find little evidence for tissue-specific mosaic mutation, multi-tissue post-zygotic mutation (i.e. mosaicism) is frequent, with detectable mosaic variation comprising 5.4% of all de novo mutations. We identify three mosaic missense and likely-gene disrupting mutations in genes previously implicated in ASD (KMT2C, NCKAP1, and MYH10) in probands but none in siblings. We find a strong ascertainment bias for mosaic mutations in probands relative to their unaffected siblings (p = 0.003). We build a model of de novo variation incorporating mosaic variants and errors in classification of mosaic status and from this model we estimate that 33% of mosaic mutations in probands contribute to 5.1% of simplex ASD diagnoses (95% credible interval 1.3% to 8.9%). Our results indicate a contributory role for multi-tissue mosaic mutation in some individuals with an ASD diagnosis.  相似文献   

10.
Aggression is an aspect of social behavior that can be elevated in some individuals with autism spectrum disorder (ASD) and a concern for peers and caregivers. Mutations in Phosphatase and tensin homolog (PTEN), one of several ASD risk factors encoding negative regulators of the PI3K–Akt–mTOR pathway, have been reported in individuals with ASD and comorbid macrocephaly. We previously showed that a mouse model of Pten germline haploinsufficiency (Pten+/?) has selective deficits, primarily in social behavior, along with broad overgrowth of the brain. Here, we further examine the social behavior of Pten+/? male mice in the resident–intruder test of aggression, using a comprehensive behavioral analysis to obtain an overall picture of the agonistic, non‐agonistic and non‐social behavior patterns of Pten+/? mice during a free interaction with a novel conspecific. Pten+/? male mice were involved in less aggression than their wild‐type littermates. Pten+/? mice also performed less social investigation, including anogenital investigation and approaching and/or attending to the intruder, which is consistent with our previous finding of decreased sociability in the social approach test. In contrast to these decreases in social behaviors, Pten+/? mice showed increased digging. In summary, we report decreased aggression and increased repetitive behavior in Pten+/? mice, thus extending our characterization of this model of an ASD risk factor that features brain overgrowth and social deficits.  相似文献   

11.
Germline mutations in the tumor suppressor gene TP53 occur in the majority of families with Li-Fraumeni syndrome, who are at an increased risk for a wide spectrum of early onset cancers. Several genetic polymorphisms in TP53 modify its effect on cancer risk. While some studies indicate that the TP53 PIN3 deletion allele (D) accelerate tumor onset in carriers with TP53 germline mutations, other studies have shown that the TP53 PIN3 insertion allele (I) confers a significantly higher risk of developing cancer than D allele. To further determine the effects of the TP53 PIN3 polymorphism on cancer development among TP53 germline mutations and to evaluate if those are differenence between male and female carriers, we studied a total of 152 germline mutation carriers with available DNA samples that can be used for genotyping. Our results indicate that the TP53 PIN3 polymorphism has a sex-specific effect on the risk of cancer in TP53 mutation carriers, conferring cancer risk in men (P = 0.0041) but not women with DI or II genotypes.  相似文献   

12.

Background

One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene.

Methods

In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample.

Results

Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B.

Conclusions

Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential role in the pathophysiology of these disorders.  相似文献   

13.
In order to identify the spectrum of BRCA2 mutations in African Americans, breast or ovarian cancer patients from 74 independent families at elevated risk of germline mutations were investigated. The entire coding regions and flanking introns of BRCA2 were screened for germline mutations by single-stranded conformation polymorphism, protein truncation test, or denaturing high performance liquid chromatography followed by DNA sequencing. Eight distinct protein-truncating mutations were detected in six female patients (average age of onset of breast cancer: 37.6 years) and two male patients, but not in 163 unrelated disease-free controls. Two (1993delAA, 8643delAT) of the eight pathogenic mutations observed in African Americans have not been previously described. The other six pathogenic mutations (1882delT, 1991delATAA, 2001delTTAT, 2816insA, 4075delGT, 4088delA) have been detected in Caucasians; only the 2816insA mutation has been reported previously in African Americans. There were no significant differences in the frequency of deleterious BRCA2 mutations in African Americans compared with Caucasians. Six rare variations, not previously reported, were identified in five breast cancer patients but not in 163 disease-free control subjects. Of 11 different polymorphisms identified in high-risk African-American breast cancer patients, four may be unique to African Americans. An intron 10 polymorphism observed in patients was not detected in 163 disease-free African-American control subjects; this difference is statistically significant. Since many different pathogenic mutations and variants of unknown significance are observed in African Americans, BRCA2 genetic testing in high-risk African-American families must include the entire coding and flanking non-coding regions of the gene.  相似文献   

14.
Gow JL  Noble LR  Rollinson D  Jones CS 《Genetica》2005,124(1):77-83
Genotyping of 11 microsatellites in 432 offspring from 28 families of the hermaphroditic, freshwater snail Bulinus forskalii detected 10 de novo mutant alleles. This gave an estimated mutation rate of 1.1 × 10–3 per locus per gamete per generation. There was a trend towards repeat length expansion and, unlike most studies, multi-step mutations predominated, suggesting that the microsatellite mutation process does not conform to a strict stepwise mutation model. Interestingly, the ten mutant alleles appear to have arisen from only six independent germline mutation events within the microsatellite array, with seven of them residing in three mutational clusters. Our results extend observations of clustered microsatellite mutations to another taxonomic group and type of mating system, self-fertile gastropods, and provide compelling evidence of premeiotic germline mutations, a phenomenon that could greatly impact upon our understanding of mutation dynamics but which has received little attention.  相似文献   

15.
SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.  相似文献   

16.
Mini- and microsatellites, comprising tandemly repeated short nucleotide sequences, are abundant dispersed repetitive elements that are ubiquitous in eukaryotic genomes. In humans and other bisexual species hypervariable mini- and microsatellite loci provide highly informative systems for monitoring of germline and somatic instability. However, little is known about the mechanisms by which these loci mutate in species that lack effective genetic recombination. Here, multilocus DNA fingerprinting was used to study M13 minisatellite and (GATA) n microsatellite instability in the parthenogenetic Caucasian rock lizard Darevskia unisexualis (Lacertidae). DNA fingerprinting of 25 parthenogenetic families, from six isolated populations in Armenia (comprising a total of 84 siblings), using the oligonucleotide (GATA)4 as a hybridization probe, revealed mutant fingerprinting phenotypes in 13 siblings that differed from their mothers in several restriction DNA fragments. In three families (8 siblings), the mutations were present in the germline. Moreover, the mutant fingerprint phenotypes detected in siblings were also present in population DNA samples. No intrafamily variations in DNA fingerprint patterns were observed with the M13 minisatellite probe. Estimates of the mutation rate for (GATA) n microsatellite loci in D. unisexualis showed that it was as high as that seen in some bisexual species, reaching 15% per sibling or 0.95% per microsatellite band. Furthermore, in one case, a somatic (GATA) n microsatellite mutation was observed in an adult lizard. These findings directly demonstrate that mutations in (GATA) n microsatellite loci comprise an important source of genetic variation in parthenogenetic populations of D. unisexualis.Communicated by G. P. Georgiev  相似文献   

17.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by ritualistic-repetitive behaviors and impaired verbal and non-verbal communication. Boys are more likely to be diagnosed with ASD than girls. Genetics have been shown to play a key role in the etiology of autism. Many genes were found to be implicated in the inheritance of idiopathic autism. Analysis of mutation abnormalities associated with autism contributes significantly to the identification of autism candidate genes. Whole-exome sequencing has been shown as an application of the next generation sequencing technology used to determine the variations of all coding regions, or exons of the known genes. In the present study, we have found two novel heterozygous missense mutations (p.L111P and p.R3048C) on the RYR3 gene, which was located in the autism susceptibility region (15q14-q15) in a 9-year-old boy with ASD. Therefore, the sequence missense mutations provide the first suggestive link between a genetic abnormality in the RYR3 gene and a neurodevelopmental disorder.  相似文献   

18.
19.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor that mediates multiple functions such as migration, cycling and survival by binding to hepatocyte growth factor (HGF). Dysregulation of MET through inappropriate expression or mutation has been shown to play an important role in human cancers. Furthermore, inherited mutations in MET are known to contribute to the development of gastric and renal cancer in humans. Lastly, mouse models of MET mutations lead to the development of a wide variety of cancers including lymphomas, sarcomas and some forms of carcinoma. In the process of cloning canine MET, a novel germline point mutation was found in the juxtamembrane domain (G966S) in two of the templates used for cloning, both of which were derived from Rottweiler dogs, a breed believed to be at high risk for the development of several cancers. Screening of germline DNA from a variety of breeds revealed that this mutation was present in approximately 70% of Rottweiler dogs and <5% of all other breeds examined, suggesting a breed-specific heritable mutation. Stable transfection of the G966S mutant form of MET into NIH3T3 cells resulted in enhanced baseline scattering and migration of the cells, which was further increased in the presence of HGF. This study supports the notion that particular dog breeds may carry germline mutations that contribute to high rates of cancer in a manner similar to heritable, cancer-associated mutations in humans.  相似文献   

20.
The Min (multiple intestinal neoplasia) mouse with a germline mutation in the adenomatous polyposis coli gene serves as an animal model for familial adenomatous polyposis coli (FAP). The number and age at onset of colorectal adenomas varies in the offspring of Min mice crossed with other strains. The murine gene for the secretory phospholipase A2 (PLA2G2A) was found to be the main candidate for these variations. To test the hypothesis of a correlation between PLA2G2A gene alterations and human tumor development, we screened 14 patients with FAP and 20 patients with sporadic colorectal cancer for germline and somatic PLA2G2A gene mutations. None of the individuals with FAP showed PLA2G2A germline alterations. However, a germline mutation was observed in one patient with an apparently sporadic colorectal tumor; the wildtype allele was somatically lost in the tumor of this patient. Received: 12 February 1997 / Accepted: 9 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号