首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
植物高亲和钾离子转运蛋白HAK功能研究进展   总被引:1,自引:0,他引:1  
钾(Potassium,K)是植物生长发育重要的营养元素,素有"抗逆元素"和"品质元素"之称。在低钾环境下植物主要利用高亲和的转运蛋白进行钾离子的吸收和转运,KUP/HAK/KT作为植物体内钾离子高亲和转运蛋白家族中最大,成员最多的家族,在植物高亲和转运钾离子过程中发挥关键作用。系统阐述了植物KUP/HAK/KT家族的基本情况及其分类、高亲和钾离子转运蛋白HAK的系统发育分析、HAK转运蛋白在提高植物钾吸收,影响植物生长发育,增强植物抵抗生物胁迫和非生物胁迫能力等方面的功能研究,最后展望了钾离子转运蛋白HAK后续有待解决的问题。深入了解HAK钾转运蛋白在植物体内的作用机制对于有效提高钾肥的利用效率,提升作物产量与品质,促进农业发展等方面具有重要的现实意义。  相似文献   

2.
拟南芥液泡膜Na+/H+逆向转运蛋白的研究进展   总被引:2,自引:0,他引:2  
安静  张荃 《生命科学》2006,18(3):273-278
拟南芥液泡膜Na /H 逆向转运蛋白是由AtNHX1基因编码的一个在盐胁迫中起重要作用的蛋白。本文综述了AtNHX1的基本结构、功能及作用机制,展望其作为有效植物耐盐基因的前景,并对拟南芥液泡膜Na /H 逆向转运蛋白基因家族其他成员的研究,也做了相应的概括。  相似文献   

3.
植物跨膜离子转运蛋白与其耐盐性关系研究进展   总被引:1,自引:0,他引:1  
盐胁迫下植物吸收过多的N a ,使植物体内的离子平衡受到破坏,为了维持其正常生长细胞内的各种离子就必须保持平衡,而这一过程主要是由位于质膜和液泡膜上的离子转运蛋白完成的,并在植物耐盐性方面起关键作用。本文主要对响应盐胁迫的几种跨膜转运蛋白如:K /N a 离子转运蛋白、N a /H 逆向转运蛋白以及与其相关的H -ATPase等,在植物耐盐分子生物学方面的研究进展进行综述。  相似文献   

4.
钾在植物生长发育中处于不可或缺的地位,钾离子的吸收和转运依靠钾离子通道和钾离子转运载体。植物中钾离子转运载体包括KUP/HAK/KT、Trk/HKT、KEA、CHX四个主要的家族,其中KUP/HAK/KT转运载体家族在植物的生长发育、逆境响应及信号转导中发挥重要作用。该文就该家族在以上这些功能进行总结概述。  相似文献   

5.
植物K+通道AKT1的研究进展   总被引:1,自引:0,他引:1  
伍国强 《植物学报》2017,52(2):225-234
钾(K)是植物生长发育必需的大量营养元素之一, 主要通过根细胞的K+通道及转运蛋白介导吸收。AKT1是Shaker型K+通道家族的重要成员, 在植物根吸收K+和体内跨膜转运中发挥重要作用。该文综述了植物AKT1的分子结构、组织特异性表达、调控机制及生物学功能等方面的研究进展, 并对该通道今后的研究方向进行了展望。  相似文献   

6.
植物NHX家族基因,在植物的生长发育以及生物与非生物胁迫的应答反应中发挥着十分重要的作用。为了探究花烟草Na+/H+逆向转运蛋白的生理功能,为花烟草耐盐分子机制的研究提供参考。采用同源克隆的方法进行基因克隆,对花烟草进行非生物胁迫,并运用qPCR的方法进行基因表达模式分析。结果表明,从花烟草(Nicotiana alata)中克隆了一个属于Na+/H+逆向转运蛋白家族的基因NaNHX1。该基因的开放阅读框全长为1 599 bp,编码了532个氨基酸残基。生物信息学分析结果表明,该基因编码的蛋白分子量为58.4 kD,等电点为5.66;具有Na+/H+逆向转运蛋白家族典型的保守结构域NhaP2;该蛋白属于疏水性蛋白,包含10个跨膜区。NaNHX1基因主要定位于细胞质膜,并含有多个磷酸化位点。同源性分析的结果显示,NaNHX1基因与美花烟草(Nicotiana sylvestris)、茸毛烟草(Nicotiana tomentosiformis)以及番茄(Solanum lycoperisicum)NHX基因的亲缘关系最近,而与拟南芥的NHX基因同源性最低。NaNHX1基因的表达具有组织表达特异性,花中表达量最高,茎中次之,根和叶中表达量较低。在高盐、干旱、低温、ABA、低钾及H2O2等非生物胁迫下,NaNHX1的表达呈现3种不同的表达模式。其中,对高盐及低钾胁迫的响应强烈。本研究的结果表明,NaNHX1基因属于Na+/H+逆向转运蛋白家族,可能参与了花烟草高盐和低钾胁迫,以及其它非生物胁迫响应在内的众多生理过程。  相似文献   

7.
ABC转运蛋白(ATP binding cassette transporter) 是目前发现的最大的蛋白家族之一,其广泛存在于真核生物与原核生物之中,近年来在植物研究领域正受到越来越多的关注。ABC转运蛋白的转运底物种类较为多样,该家族成员几乎作用于植物生长发育的各个阶段,并对植物花器官产生较大的影响。该文对ABC转运蛋白的基本特征及亚家族分类情况进行了总结,重点对近年来国内外有关ABC转运蛋白家族在植物花药和花序轴等花器官生长发育,以及花瓣形态、花色、花香等观赏性状方面的调控功能等方面的研究进展进行了综述,并对ABC转运蛋白在改良植物花色、花香等观赏性状方面的应用潜力进行展望,以期为植物观赏性状的改良提供一定的参考。  相似文献   

8.
植物对钾营养的吸收、运转和胁迫反应的研究进展   总被引:10,自引:0,他引:10  
钾营养研究是植物营养研究中的重要内容之一.对植物中钾的吸收和转运、钾转运系统、低钾胁迫和缺钾时的生理表现等方面做了详细的综述,并提出了解决钾肥供需矛盾的措施.  相似文献   

9.
植物非特异性脂质转移蛋白(non-specific lipid transfer proteins,nsLTP)是一类多基因家族编码碱性蛋白,负责脂肪酸体外结和与膜之间的磷脂转移,在植物生长发育和逆境胁迫响应中扮演着重要角色。目前为止,尚无模式植物毛果杨(Populus trichocarpansLTP家族的研究报导。本研究从全基因组水平对PtrnsLTP家族成员的基因数量、亲缘关系、基因结构、编码蛋白保守基序等特性进行了分析,结果表明:PtrnsLTP家族共由39个基因组成,进化成5个亚家族,其中A亚族含有6个基因、B亚族含有2个、C亚族含有13个、D亚族含有3个、E亚族含有15个。PtrnsLTP家族包含7对旁系同源基因,其中1对大于1,6对Ka/Ks均远小于1,且这6对基因均处于同一个大的进化分支上,进化压力的不同导致基因间的功能出现了分化,编码蛋白均含有Motif 1和 Motif 2保守基序。利用qRT-PCR技术并结合杨树转录组数据对PtrnsLTP的组织表达与盐胁迫响应特性研究发现:各家族成员在毛果杨根、茎和叶中均有表达且经qRT-PCR技术验证后与网站预测结果基本吻合,有11、15和13个成员分别在根、茎和叶中有较高的表达,表明该基因家族参与了杨树不同组织的生长发育;NaCl胁迫下,该家族39个基因中分别有26个成员在根部、14个成员在叶部表达量随着胁迫时间的增加而升高,而32个基因在茎部表现为先升高后降低的趋势。本研究结果对于PtrnsLTP家族基因生物学功能的鉴定与盐胁迫响应基因资源的工作有着积极的推动作用。  相似文献   

10.
干旱、低温、土地盐碱化等非生物胁迫是影响植物生长发育以及作物产量的重要因素。近年来大量研究表明,多种转录因子参与调控植物对各种生物及非生物胁迫的应答与防御反应,与此同时人们对其作用机理的探索也日渐深入。AP2/ERF转录因子家族是植物所特有的一类转录因子,在拟南芥中该家族至少有146个成员;而在水稻中该基因家族多达181个,是已知水稻转录因子基因中最大的家族。这些编码含有一个保守APETALA(AP2)结构域的蛋白质可能在植物多个发育过程及应答外界环境信号过程中发挥重要功能。综述了AP2/EREBP类转录因子的结构特征及其功能特性,并重点讨论了它们在植物抗逆中的调控作用及其在植物抗逆性分子遗传改良上的意义。  相似文献   

11.
Plant KT/KUP/HAK potassium transporters: single family - multiple functions   总被引:3,自引:0,他引:3  
Grabov A 《Annals of botany》2007,99(6):1035-1041
BACKGROUND AND AIMS: Potassium transporters belonging to the KT/KUP/HAK family are important for various aspects of plant life including mineral nutrition and the regulation of development. Genes encoding these transporters are present in the genomes of all plants, but have not been found in the genomes of Protista or Animalia. The aim of this Botanical Briefing is to analyse the function of KT/KUP/HAK transporters from evolutionary, molecular and physiological perspectives. SCOPE: This Briefing covers the phylogeny and evolution of KT/KUP/HAK transporters, the role of transporters in plant mineral nutrition and potassium homeostasis, and the role of KT/KUP/HAK transporters in plant development.  相似文献   

12.
Potassium transporters belonging to the KT/HAK/KUP family play an important role in plant growth, development, mineral nutrition, and stress adaptation. In this study, we identified 19 KT/HAK/KUP family genes in tomato, distributed on 10 chromosomes, by using bioinformatics methods. A complete overview of the KT/HAK/KUP (SlHAK) genes in tomato is presented, including chromosome location, phylogeny, gene structure, and evolution pattern. Phylogenetic analysis of 19 SlHAK proteins suggested that group IV of the KT/HAK/KUP family is absent in the tomato genome. In addition, five pairs of segmental duplicated paralogs and two pairs of tandem duplicated paralogs were identified in the tomato KT/HAK/KUP family. This suggests that segmental duplication is predominant for the expansion of the SlHAK genes. Calculation of the approximate dates of duplication events using the synonymous substitution rate indicated that the segmental duplication of the KT/HAK/KUP genes in tomato originated 35.89–62.77 million years ago. Adaptive evolution analysis showed that purifying selection contributed to the evolution of segmental duplicated pairs. Furthermore, Tajima’s relative rate test indicated that all segmental duplicated pairs evolved at similar rates. As a first step toward a genome-wide analysis of the KT/HAK/KUP gene family in tomato, our results provide valuable information for understanding the function and evolution of the KT/HAK/KUP gene family in tomato and other species.  相似文献   

13.
C He  K Cui  A Duan  Y Zeng  J Zhang 《Ecology and evolution》2012,2(8):1996-2004
As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.  相似文献   

14.
KT/HAK/KUP potassium transporter protein-encoding genes constitute a large family in the plant kingdom. The KT/HAK/KUP family is important for various physiological processes of plant life. In this study, we identified 27 potential KT/HAK/KUP family genes in rice (Oryza sativa) by database searching. Analysis of these KT/HAK/KUP family members identified three conserved motifs with unknown functions, and 11-15 trans-membrane segments, most of which are conserved. A total of 144 putative cis-elements were found in the 2 kb upstream region of these genes, of which a Ca2+-responsive cis-element, two light-responsive cis-elements, and a circadian-regulated cis-element were identified in the majority of the members, suggesting regulation of these genes by these signals. A comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA samples of 27 tissues covering the entire life cycle from three rice genotypes, Minghui 63, Zhenshan 97, and Shanyou 63. We identified preferential expression of two OsHAK genes in stamen at 1 day before flowering compared with all the other tissues. OsHAK genes were also found to be differentially upregulated or downregulated in rice seedlings subjected to treatments with three hormones. These results would be very useful for elucidating the roles of these genes in growth, development, and stress response of the rice plant.  相似文献   

15.
Gierth M  Mäser P 《FEBS letters》2007,581(12):2348-2356
Potassium is a major plant nutrient which has to be accumulated in great quantity by roots and distributed throughout the plant and within plant cells. Membrane transport of potassium can be mediated by potassium channels and secondary potassium transporters. Plant potassium transporters are present in three families of membrane proteins: the K(+) uptake permeases (KT/HAK/KUP), the K(+) transporter (Trk/HKT) family and the cation proton antiporters (CPA). This review will discuss the contribution of members of each family to potassium acquisition, redistribution and homeostasis.  相似文献   

16.
鲁黎明  杨铁钊 《西北植物学报》2006,26(11):2402-2410
K 在植物的生命活动中发挥着十分重要的作用。植物对K 的吸收,可分为高亲和吸收与低亲和吸收。在分子水平上,高亲和吸收主要由KUP/HAK/KT及HKT家族的K 转运蛋白来承担;而Shaker、KCO等家族的K 通道蛋白,则主要在植物的低亲和吸收中发挥重要作用。AKT1、HAK5及其在植物中的同源基因在高等植物K 吸收转运中占有举足轻重的地位。KUP/HAK/KT家族基因的调节,主要是转录水平的调节,而K 通道蛋白的调节则可能主要是一种翻译后调节。植物的蛋白激酶通过磷酸化K 通道蛋白来调节通道的活性,从而改变K 的吸收特性。本文综述了高等植物K 吸收运转及调节的分子机制研究方面的最新进展,并对研究的前景进行了展望。  相似文献   

17.
水稻是全球主要粮食作物之一,随着种植区盐渍化加剧,其产量及安全已受到严重威胁。土壤中过高的盐浓度使细胞内Na+过量累积,K/Na失衡,造成离子毒害和渗透胁迫。为减轻盐胁迫带来的生长抑制,水稻进化出一系列适应性机制,包括钾运输载体对K+的摄取或运输以及对Na+的区隔化或外排。水稻中介导这些过程的钾运输载体家族可划分为Shaker、TPK、KT/HAK/KUP、HKT和CPA五大家族。本文总结了上述水稻钾运输载体在盐胁迫下的功能作用及调控机制的研究进展,并对未来研究前景予以展望。  相似文献   

18.
Han Lei  Junlin Li  Zhizhong Song 《Phyton》2022,91(11):2519-2536
Potassium (K+) is an essential macronutrient for plants to maintain normal growth and development. Shaker-like K+ channels and HAK/KUP/KT transporters are critical components in the K+ acquisition and translocation. In this study, we identified 9 Shaker-like K+ channel (VvK) and 18 HAK/KUP/KT transporter (VvKUP) genes in grape, which were renamed according to their distributions in the genome and relative linear orders among the distinct chromosomes. Similar structure organizations were found within each group according to the exon/intron structure and protein motif analysis. Chromosomal distribution analysis showed that 9 VvK genes and 18 VvKUP genes were unevenly distributed on 7 or 10 putative grape chromosomes. Three pairs of tandem duplicated genes and one pair of segmental duplicated genes were observed in the expansion of the grape VvKUP genes. Gene expression omnibus (GEO) data analysis showed that VvK and VvKUP genes were expressed differentially in distinct tissues. Various cis-acting regulatory elements pertinent to phytohormone responses and abiotic stresses, including K+ deficiency response and drought stress, were detected in the promoter region of VvK and VvKUP genes. This study provides valuable information for further functional studies of VvK and VvKUP genes, and lays a foundation to explore K+ uptake and utilization in fruit trees.  相似文献   

19.
Potassium ions (K(+)) are the most abundant cations in plants and are necessary for cell growth. Arabidopsis shy3-1 mutant plants have a short hypocotyl, small leaves, and a short flowering stem, and these defects result from decreased cell expansion. The semidominant shy3-1 mutation changes an amino acid in KT2/KUP2, a K(+) transporter related to the Escherichia coli Kup protein. Second mutations in the KT2/KUP2/SHY3 gene, including presumed null mutations, suppress the shy3-1 phenotypes. Plants with these intragenic suppressor mutations appear similar to wild-type plants, suggesting that KT2/KUP2/SHY3 acts redundantly with other genes. Expression of the shy3-1 mutant version of KT2/KUP2/SHY3 in wild-type plants confers shy3-1-like phenotypes, indicating that shy3-1 probably either causes a gain of function or creates an interfering protein. The shy3-1 mutation does not eliminate the ability of the KT2/KUP2 cDNA to rescue the growth of a potassium transport-deficient E. coli mutant. A P(SHY3)::GUS fusion is expressed in growing portions of the plant. These results suggest that KT2/KUP2/SHY3 mediates K(+)-dependent cell expansion in growing tissues.  相似文献   

20.
高等植物钾转运蛋白   总被引:3,自引:0,他引:3  
钾在植物生长发育过程中具有许多重要的作用。以模式植物拟南芥中克隆和鉴定的钾通道和转运体为基础,全面介绍了高等植物中钾转运体系家族,包括Shaker通道、KCO通道、KUP/HAK/KT转运体、HKT转运体和其它转运体。同时,分析了在高等植物中存在多种钾吸收和转运机制的可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号