首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,4-dioxane, a cyclic ether, is an emerging contaminant which is difficult to remove from water with conventional water treatment methods and resistant to biodegradation. Once a reliable force field is developed for 1,4-dioxane, molecular simulation techniques can be useful to study alternative adsorbents for its removal. For this purpose, we carried out Monte Carlo simulations in a constant volume Gibbs Ensemble to generate a force field which is capable of predicting the vapour–liquid coexistence curve and critical data of 1,4-dioxane. Results are given in comparison with experimental data and results from simulations with other force fields. Liquid densities and critical temperature are predicted in excellent agreement with experimental data using the new force field. At high temperatures, predicted vapour densities are in good agreement with experimental data, however, at lower temperatures the predicted vapour densities deviate about an order of magnitude from the experimental values. The critical density is slightly underestimated with our new force field. However, overall, the results of simulations with the new parameters give much better agreement with experimental data compared to the results obtained using other force fields.  相似文献   

2.
GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.  相似文献   

3.
Theoretical conformational analysis of phospholipids bilayers   总被引:2,自引:0,他引:2  
We present a computational approach describing the conformation of lipid molecules (1-2-dipalmitoyl-sn-glycero-3 phosphocholine (DPPC)) organized in bilayers. The classical semi-empirical method used in peptide conformational analysis has been extended successfully to lipids. The excellent agreement between our theoretical predictions and recent experimental data on the molecular organization of lipid bilayers suggests that the method could be a valuable tool in the lipid conformational analysis but also in the prediction of orientation and mode of insertion of amphiphilic molecules into the lipid bilayer.  相似文献   

4.
The solubilities of five saccharides in water have been measured at various temperatures. This includes the monosaccharides xylose and galactose, and the disaccharides maltose monohydrate, cellobiose and trehalose dihydrate. A method that uses interaction energies and interaction parameters calculated with molecular mechanics methods has shown to give good predictions of the phase behavior of a variety of mixtures, including glycols and small saccharides in aqueous solution. The method is completely predictive, as the strength of the molecular interactions is determined with a theoretical method in the absence of any phase equilibrium data. For calculating solubilities, experimental values for the melting points and the heats of fusion of the compounds under study are, however, necessary. The solubilities of the five saccharides listed above, raffinose and meso-erythritol in water were calculated with this method. The calculated solubilities are in reasonably good agreement with experiment, and in the case of meso-erythritol, which is a polyalcohol (polyol), and galactose, the agreement between prediction and experiment is excellent. Also the vapor pressures of water over several polyols and saccharides in aqueous solution have been predicted with this method, giving results in excellent agreement with the experimental values.  相似文献   

5.
In the last decade many advances have been made on molecular dynamics simulations and different force fields were developed from the combination of differentiable functions of the atomic coordinates to represent the system energy and of parameters that describe the geometric and energetic properties of inter-particle interactions. However, it has been shown that very subtle modifications to commonly used molecular mechanical potentials can significantly alter the behavior of those potentials inducing stabilizing or destabilizing effects in the patterns of peptides or proteins. In this article we describe the behavior of polyalanine peptides under the influence of various “force fields”. The polyalanines were chosen as study model since their structural features were already studied experimentally and thus our computational results were easily comparable with the experimental ones. In particular, three peptides composed of 8, 10 and 12 alanine residues were subjected to molecular dynamics simulations using 12 different force fields to understand what is the most appropriate force field to properly simulate their folding. Our results showed that Amber99? is the best force field able to generate helical conformations in agreement with experimental data.  相似文献   

6.
ABSTRACT

Molecular dynamics simulations are more frequently being utilised to predict macroscale mechanical properties as a result of atomistic defects. However, the interatomic force field can significantly affect the resulting mechanical properties. While several studies exist which demonstrate the ability of various force fields to predict mechanical properties, the investigation into which is most accurate for the investigation of vacancies is limited. To obtain meaningful predictions of mechanical properties, a clear understanding of force field parameterisation is required. As such, the current study evaluates various many-body force fields to demonstrate the reduction in mechanical properties of iron and iron–chromium due to the presence of vacancies while undergoing room temperature atomistic uniaxial tension. Reduction was normalised in each case with the zero-vacancy elastic modulus, removing the need to predict an accurate nominal elastic modulus. Comparisons were made to experimental data and an empirical model from literature. It was demonstrated that accurate fitting to vacancy formation and migration energy allowed for accurate predictions. In addition, bond-order based force fields showed enhanced predictions regardless of fitting procedure. Overall, these findings highlight the need to understand capabilities and limitations of available force fields, as well as the need for enhanced parameterisation of force fields.  相似文献   

7.
Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement.  相似文献   

8.
An empirical force field, denoted AMB99C, has been used to study molecular properties of alpha-(1-->4)-linked carbohydrates in solution. AMB99C was parameterized using structural and energetic parameters from density functional ab initio methodology. In this work we examine the solution behavior of the beta anomer of maltose and cyclohexa-, cyclohepta-, and cyclooctaamyloses (alpha-, beta-, and gamma-cyclodextrins or alpha-, beta-, and gamma-CDs, respectively), as well as of two larger (DP 10, epsilon-CD; DP 21) cyclomaltooligosaccharides, CA10 and CA21. Experimental data used for comparison purposes include X-ray structures, small-angle scattering radius of gyration values, NMR nuclear Overhauser enhancements (NOEs), and proton coupling constants. Molecular dynamics simulations were carried out using explicit water molecules (TIP3P) to establish equilibrium populations of conformations in solution, and these results are compared with other calculated values and a variety of experimental parameters, such as average H-1-H-4' distances between the rings in beta-maltose, and the primary hydroxyl groups' conformational populations. Medium-to-large cyclomaltooligosaccharide molecules were studied to test for glucose ring puckering and stability of kinked and 'flipped' conformations. The results of the solvation studies are in excellent agreement with experimental structural parameters.  相似文献   

9.
In this study, the recently developed gradient-based optimisation workflow for the automated development of molecular models is for the first time applied to the parameterisation of force fields for molecular dynamics simulations. As a proof-of-concept, two small molecules (benzene and phosgene) are considered. In order to optimise the underlying intermolecular force field (described by the (12,6)-Lennard-Jones and the Coulomb potential), the energetic and diameter parameters ε and σ are fitted to experimental physical properties by gradient-based numerical optimisation techniques. Thereby, a quadratic loss function between experimental and simulated target properties is minimised with respect to the force field parameters. In this proof-of-concept, the considered physical target properties are chosen to be diverse: density, enthalpy of vapourisation and self-diffusion coefficient are optimised simultaneously at different temperatures. We found that in both cases, the optimisation could be successfully concluded by fulfillment of a pre-defined stopping criterion. Since a fairly small number of iterations were needed to do so, this study will serve as a good starting point for more complex systems and further improvements of the parametrisation task.  相似文献   

10.
Biomolecular force fields for use in molecular dynamics (MD) simulations of proteins, DNA, or membranes are generally parametrized against ab initio quantum-chemical and experimental data for small molecules. The application of a force field in a simulation of a biomolecular system, such as a protein in solution, may then serve as a test of the quality and transferability of the force field. Here, we compare various properties obtained from two MD simulations of the protein hen egg white lysozyme (HEWL) in aqueous solution using the latest version, GROMOS96, of the GROMOS force field and an earlier version, GROMOS87+, with data derived from nuclear magnetic resonance (NMR) experiments: NOE atom-atom distance bounds, (3)J(HNalpha)-coupling constants, and backbone and side-chain order parameters. The convergence of these quantities over a 2-ns period is considered, and converged values are compared to experimental ones. The GROMOS96 simulation shows better agreement with the NMR data and also with the X-ray crystal structure of HEWL than the GROMOS87+ simulation, which was based on an earlier version of the GROMOS force field.  相似文献   

11.
Compared with imidazolium-based ionic liquids (ILs), phosphonium-based ILs have been proven to be more stable in thermodynamics and less expensive to manufacture. In this work, a kind of phosphonium-based IL, [PC6C6C6C14][Tf2N], was studied under several conditions using molecular dynamics simulations based on both the all-atom force field (AAFF) and the united-atom force field. Liquid density was calculated to validate the force field. Compared with experimental data, good agreement was obtained for the simulated density based on the AAFF. Heat capacities at constant pressure were calculated at several temperatures, and good linear relationships were observed. Self-diffusion coefficients, viscosities and conductivities were also calculated to study the dynamics properties of this IL. The viscosity of this IL at 293 K was also compared with experimental data, and the error was in a reasonable range. In order to depict the microstructures of the IL, centre-of-mass and site-to-site radial distribution functions were employed. In addition, spatial distribution functions were investigated to present the more intuitive features.  相似文献   

12.
Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).  相似文献   

13.
Cells are made up of complex assemblies of cytoskeletal proteins that facilitate force transmission from the molecular to cellular scale to regulate cell shape and force generation. The “living matter” formed by the cytoskeleton facilitates versatile and robust behaviors of cells, including their migration, adhesion, division, and morphology, that ultimately determine tissue architecture and mechanics. Elucidating the underlying physical principles of such living matter provides great opportunities in both biology and physics. For physicists, the cytoskeleton provides an exceptional toolbox to study materials far from equilibrium. For biologists, these studies will provide new understanding of how molecular-scale processes determine cell morphological changes.The distinction between being “alive” or “not alive” has been a long-standing question for those interested in our natural world. In many ancient cultures, the difference between living organisms and inorganic matter was thought to be due to innate differences arising from a “vital force,” such that biology operated with different fundamental properties than the physical world. The ability to disprove such theories came about over the course of the 17th to the 19th centuries, as scientists developed theories of atoms and were able to synthesize organic matter from inorganic constituents. Over the past 100 years, developments in molecular biology and biochemistry have provided a wealth of information on the structure and function of biological molecules, much of which was acquired in collaborations between physical and biological scientists. Application of X-ray–scattering techniques first developed to study metals enabled discovery of the structure of complicated biological molecules ranging from DNA to ion channels. Use of laser trapping techniques first developed to trap and cool atoms enabled precise force spectroscopy measurements of single molecular motors. We now know that biological molecules, while more complicated than their inorganic counterparts, must obey the rules of physics and chemistry.This wealth of molecular-scale information does not directly inform the behaviors of living cells. The organelles within cells are made up of complex and dynamic assemblies of proteins, lipids, and nucleic acids, all immersed within an aqueous environment. These assemblies are somehow able to build materials that can robustly facilitate the plethora of morphological and physical behaviors of cells at the subcellular (intracellular transport), cellular (division, adhesion, migration), and multicellular (tissue morphogenesis, wound healing) length scales. The dynamic cytoskeleton transmits information and forces from the molecular to the cellular length scales. But what is it about the behaviors of biological molecules that endow cells with the ability to respirate, move, and replicate themselves robustly—all qualities we consider essential to “life”? For these questions, understanding of the physics and chemistry of systems of biological molecules is needed. Interactions that occur within ensembles of molecules lead to emergent properties and behaviors that cannot be predicted at the single-molecule level. These emergent chemical and physical properties of living matter are likely fundamentally different from inorganic or “dead” materials. Discovering the underlying principles of living matter provides fantastic opportunities to learn new physics and biology.The fields of condensed matter physics and materials science study the physical properties that emerge when objects (e.g., atoms, molecules, grains of sand, or soap bubbles) are placed in sufficiently close proximity, such that interactions between them cannot be ignored. Interatomic or intermolecular interactions give rise to emergent properties that are not seen in isolated species. Familiar examples involve electron transport across a material or a material''s response to externally applied magnetic fields or mechanical forces. These emergent properties, such as conductivity, elasticity, and viscosity, enable us to predict the behavior of a collection of objects in these condensed phases. In this paper, I will focus on my perspective of how approaches to understanding the mechanical properties of physical materials can inform understanding of the mechanical properties of living matter found within cells.In a crystal of metal, precisely organized atoms are located nanometers apart, and the energies of their interactions are on the scale of an electron volt (40-fold larger than thermal energy or twice the energy released on the hydrolysis of a single ATP molecule). These give rise to an energy density, or elastic modulus, on the order of gigapascals, which underlies the rigidity of metals. For small deformations, the restoring force between atoms means that this metal behaves like an elastic spring: after a force is applied, the metal returns to its original shape. Understanding force transmission through crystalline metals was facilitated by the development of elasticity theory in the 16th and 17th centuries. Fluids, such as water, lack crystalline order, but predictive understanding of fluid flows and forces was captured through development of theories of fluid dynamics. Now think of another material, Silly Putty, which behaves elastically at short timescales (it bounces like a rubber ball) but then oozes and flows at long timescales, acting like a viscous fluid. Silly Putty is made of long polymers that are trapped by one another at short timescales, but thermal energy is sufficient to allow them to diffuse and translocate at long timescales. Silly Putty is also a “soft material,” in that the polymer''s interaction energies are at the thermal energy level, and its length scale is at the micrometer level. Materials like Silly Putty were thought to be too complicated for analytical theory. It was only in the middle of the 20th century that the theoretical framework to understand these “messy” and “disorganized” polymer-based materials was developed.The most powerful theories for understanding these vastly different forms of physical matter were developed in the absence of even the simplest of computers. The theories relied on developing physical properties or parameters to describe the material with a “mean field,” a type of coarse-graining that identifies the essential properties of individual constituents and interactions but ignores many other details. These mean fields give us new intuitions concerning the origin of material properties and give rise to definitions of physical parameters, such as elasticity and viscosity. However, these theories also require materials that do not jostle around a lot and remain close to equilibrium. In fact, understanding materials “far from equilibrium” has been identified as a major challenge in physics for the next century (National Research Council, 2007) .Materials formed by dynamic protein assemblies in the cytoskeleton are disorganized, heterogeneous, and driven far from equilibrium. Motor proteins generate local stresses, and their activity is spatially modulated. The polymerization and depolymerization of cytoskeletal polymers is controlled by a myriad of regulatory proteins. All these dynamic molecular processes endow the cytoskeletal assemblies with unique behaviors that enable them to support complex physiological tasks. It is likely these dynamics also provide underlying robustness of the cells in response to fluctuating and changing environments. These properties make living cells exquisite materials that cannot be captured by existing frameworks of physical matter. I suspect that we have not yet identified the important parameters needed to characterize their properties. The rich dynamics created by active biological matter present a formidable challenge in the area of materials science.How do we hope to understand the properties of these complex cytoskeletal assemblies and materials? It may seem as though understanding cytoskeletal machinery is an insurmountable feat, the approaches that have been successful for physical materials will not work, and we must rely on complex simulations that require modeling of all individual components. This may be true. However, I think that this is a pessimistic view. Just consider how complicated physical materials would be if we did not have the appropriate parameters to describe the macroscopic responses and had instead became obsessed about knowing the details of all the interactions between underlying atoms and molecules? In the same vein, I believe that predictive insights into biological matter will emerge through development of new physical theories that use mean-field approaches to understanding materials that contain active components and are driven far from equilibrium. The burgeoning field of active-matter physics is currently considering these questions (Ramaswamy, 2010) . However, these theoretical approaches require physical measurements of cells and cellular proteins that may not be clearly linked to a physiological process or have a clear biological context. Materials built from cytoskeletal proteins in vitro should also provide an excellent source of experimental measurements, but closer collaboration with theorists working in this field and collaboration between biochemists and experimental physical scientists is needed to develop control over such materials. Developing predictive physical theories of the cytoskeleton will elucidate principles of why “the whole is more than the sum of its parts” that will provide greater control and design over living matter, in the same way that engineering has provided great advances in applications of materials from the physical world.What do biologists gain from theories of living matter? These theories will provide a crucial link between molecular and cellular length scale behaviors and will provide insight into the mechanisms of why specific molecular perturbations alter cell behavior. Moreover, they should provide us with general design principles of living matter. What are the basic aspects of a machine needed to separate chromosomes, establish polarity, or generate contractile forces that is utilized across different cell types? Can knowing these aspects provide insight into the evolution of cellular machines and the robustness of cell behavior? Thus, study of cellular materials both provides new opportunities for physicists and will provide crucial predictive understanding of cell physiology.Open in a separate windowMargaret L. Gardel  相似文献   

14.
H Hervet  C P Bean 《Biopolymers》1987,26(5):727-742
The electrophoretic mobility (μ) of DNA fragments from λ phage and ΦX 174, split by restriction enzyme to molecular lengths from 3 × 102 to 2.36 × 104 base pairs, has been investigated in 0.6–4% agarose gels at various field strengths, ionic strengths, and temperatures. As already observed, μ is seen to be very sensitive to the field, increasing with field strength. The sensitivity increases with the molecular length of the DNA and decreases at high gel concentration. Our data are in qualitative agreement with recent theoretical predictions that concern the influence of the electric field on electrophoretic mobility. Mobility data have been extrapolated to zero field. This enables a comparison of our experimental results with theoretical predictions on the dependence of μ on the molecular weight of the DNA fragments. Our data fit, quite closely, a reptation model, where the tube path is described as a semiflexible entity with a persistence length equal to the pore diameter. The influence of the agarose concentration and the ionic strength of the buffer on the two parameters of the model—intrinsic electrophoretic mobility (μ0) and the number of base pairs per element of the tube (g)—are well described by the model. The temperature dependence of the electrophoretic mobility, together with the influence of the agarose concentration on μ0, indicate that the hydrodynamic drag is the leading frictional force on the DNA molecules in the gel.  相似文献   

15.
16.
Today's energy functions are not able yet to distinguish reliably between correct and almost correct protein models. Improving these near-native models is currently a major bottle-neck in homology modeling or experimental structure determination at low resolution. Increasingly accurate energy functions are required to complete the "last mile of the protein folding problem," for example during a molecular dynamics simulation. We present a new approach to reach this goal. For 50 high resolution X-ray structures, the complete unit cell was reconstructed, including disordered water molecules, counter ions, and hydrogen atoms. Simulations were then run at the pH at which the crystal was solved, while force-field parameters were iteratively adjusted so that the damage done to the structures was minimal. Starting with initial parameters from the AMBER force field, the optimization procedure converged at a new force field called YAMBER (Yet Another Model Building and Energy Refinement force field), which is shown to do significantly less damage to X-ray structures, often move homology models in the right direction, and occasionally make them look like experimental structures. Application of YAMBER during the CASP5 structure prediction experiment yielded a model for target 176 that was ranked first among 150 submissions. Due to its compatibility with the well-established AMBER format, YAMBER can be used by almost any molecular dynamics program. The parameters are freely available from www.yasara.org/yamber.  相似文献   

17.
The interaction of single actin filaments on a myosin-coated coverslip has been modeled by several authors. One model adds a component of "frictional drag" by myosin heads that oppose movement of the actin filaments. We have extended this concept by including the resistive drag from actin crosslinking proteins to understand better the relationship among crosslinking number, actin-myosin force generation, and motility. The validity of this model is supported by agreement with the experimental results from a previous study in which crosslinking proteins were added with myosin molecules under otherwise standard motility assay conditions. The theoretical relationship provides a means to determine many physical parameters that characterize the interaction between a single actin filament and a single actin-crosslinking molecule (various types). In particular, the force constant of a single filamin molecule is calculated as 1.105 pN, approximately 3 times less than a driving myosin head (3.4 pN). Knowledge of this parameter and others derived from this model allows a better understanding of the interaction between myosin and the actin/actin-binding protein cytoskeleton and the role of actin-binding proteins in the regulation and modulation of motility.  相似文献   

18.
Orientational constraints obtained from solid state NMR experiments on anisotropic samples are used here in molecular dynamics (MD) simulations for determining the structure and dynamics of several different membrane-bound molecules. The new MD technique is based on the inclusion of orientation dependent pseudo-forces in the COSMOS-NMR force field. These forces drive molecular rotations and re-orientations in the simulation, such that the motional time-averages of the tensorial NMR properties approach the experimentally measured parameters. The orientational-constraint-driven MD simulations are universally applicable to all NMR interaction tensors, such as chemical shifts, dipolar couplings and quadrupolar interactions. The strategy does not depend on the initial choice of coordinates, and is in principle suitable for any flexible molecule. To test the method on three systems of increasing complexity, we used as constraints some deuterium quadrupolar couplings from the literature on pyrene, cholesterol and an antimicrobial peptide embedded in oriented lipid bilayers. The MD simulations were able to reproduce the NMR parameters within experimental error. The alignment of the three membrane-bound molecules and some aspects of their conformation were thus derived from the NMR data, in good agreement with previous analyses. Furthermore, the new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of all three systems.  相似文献   

19.
The optimal combination of force field and water model is an essential problem that is able to increase molecular dynamics simulation quality for different types of proteins and peptides. In this work, an attempt has been made to explore the problem by studying H1 peptide using four different models based on different force fields, water models and electrostatic schemes. The driving force for H1 peptide conformation transition and the reason why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution while the GROMOS 43A1 force field can do were investigated by temperature replica exchange molecular dynamics simulation (T-REMD). The simulation using the GROMOS 43A1 force field preferred to adopt a β-hairpin structure, which was in good agreement with the several other simulations and the experimental evidences. However, the simulation using the OPLS-AA force field has a significant difference from the simulations with the GROMOS 43A1 force field simulation. The results show that the driving force in H1 peptide conformation transition is solvent exposure of its hydrophobic residues. However, the subtle balances between residue-residue interactions and residue-solvent interaction are disrupted by using the OPLS-AA force field, which induced the reduction in the number of residue-residue contact. Similar solvent exposure of the hydrophobic residues is observed for all the conformations sampled using the OPLS-AA force field. For H1 peptide which exhibits large solvent exposure of the hydrophobic residues, the GROMOS 43A1 force field with the SPC water model can provide more accurate results.  相似文献   

20.
We propose a new method of optimisation of backbone torsion-energy parameters in the force field for molecular simulations of protein systems. This method is based on the idea of balancing the secondary-structure-forming tendencies, namely, those of α-helix and β-sheet structures. We perform a minimisation of the backbone dihedral angle-based root-mean-square deviation of the helix and β structure regions in many protein structures. As an example, we optimised the backbone torsion-energy parameters of AMBER parm96 force field using 100 protein molecules from the Protein Data Bank. We then performed folding simulations of α-helical and β-hairpin peptides, using the optimised force field. The results imply that the new force-field parameters give structures more consistent with the experimental implications than the original AMBER parm96 force field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号