首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Students who work during the school year face the potential of sleep deprivation and its effects, since they have to juggle between school and work responsibilities along with social life. This may leave them with less time left for sleep than their nonworking counterparts. Chronotype is a factor that may exert an influence on the sleep of student workers. Also, light and social zeitgebers may have an impact on the sleep-related problems of this population. This study aimed to document sleep, light exposure patterns, social rhythms, and work-related fatigue of student workers aged 19–21 yrs and explore possible associations with chronotype. A total of 88 student workers (mean?±?SD: 20.18?±?.44 yrs of age; 36 males/52 females) wore an actigraph (Actiwatch-L; Mini-Mitter/Respironics,Bend, OR) and filled out the Social Rhythm Metric for two consecutive weeks during the school year. Also, they completed the Morningness-Eveningness Questionnaire (MEQ), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), and Occupational Fatigue Exhaustion/Recovery Scale (OFER). Repeated and one-way analyses of variance (ANOVAs), Pearson's chi-square tests, and correlation coefficients were used for statistical comparisons. Subjects slept an average of 06:28?h/night. Actigraphic sleep parameters, such as sleep duration, sleep efficiency, wake after sleep onset, and sleep latency, did not differ between chronotypes. Results also show that evening types (n?=?17) presented lower subjective sleep quality than intermediate types (n?=?58) and morning types (n?=?13). Moreover, evening types reported higher levels of chronic work-related fatigue, exhibited less regular social rhythms, and were exposed to lower levels of light during their waking hours (between 2 and 11 h after wake time) as compared to intermediate types and morning types. In addition, exposure to light intensities between 100 and 500 lux was lower in evening types than in intermediate types and morning types. However, bright light exposure (≥1000 lux) did not differ between chronotypes. In conclusion, results suggest that student workers may constitute a high-risk population for sleep deprivation. Evening types seemed to cope less well with sleep deprivation, reporting poorer sleep quality and higher levels of work-related fatigue than intermediate types and morning types. The higher chronic work-related fatigue of evening types may be linked to their attenuated level of light exposure and weaker social zeitgebers. These results add credence to the hypothesis that eveningness entails a higher risk of health-impairing behaviors. (Author correspondence: )  相似文献   

2.
Students who work during the school year face the potential of sleep deprivation and its effects, since they have to juggle between school and work responsibilities along with social life. This may leave them with less time left for sleep than their nonworking counterparts. Chronotype is a factor that may exert an influence on the sleep of student workers. Also, light and social zeitgebers may have an impact on the sleep-related problems of this population. This study aimed to document sleep, light exposure patterns, social rhythms, and work-related fatigue of student workers aged 19-21 yrs and explore possible associations with chronotype. A total of 88 student workers (mean ± SD: 20.18 ± .44 yrs of age; 36 males/52 females) wore an actigraph (Actiwatch-L; Mini-Mitter/Respironics,Bend, OR) and filled out the Social Rhythm Metric for two consecutive weeks during the school year. Also, they completed the Morningness-Eveningness Questionnaire (MEQ), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), and Occupational Fatigue Exhaustion/Recovery Scale (OFER). Repeated and one-way analyses of variance (ANOVAs), Pearson's chi-square tests, and correlation coefficients were used for statistical comparisons. Subjects slept an average of 06:28 h/night. Actigraphic sleep parameters, such as sleep duration, sleep efficiency, wake after sleep onset, and sleep latency, did not differ between chronotypes. Results also show that evening types (n = 17) presented lower subjective sleep quality than intermediate types (n = 58) and morning types (n = 13). Moreover, evening types reported higher levels of chronic work-related fatigue, exhibited less regular social rhythms, and were exposed to lower levels of light during their waking hours (between 2 and 11 h after wake time) as compared to intermediate types and morning types. In addition, exposure to light intensities between 100 and 500 lux was lower in evening types than in intermediate types and morning types. However, bright light exposure (≥ 1000 lux) did not differ between chronotypes. In conclusion, results suggest that student workers may constitute a high-risk population for sleep deprivation. Evening types seemed to cope less well with sleep deprivation, reporting poorer sleep quality and higher levels of work-related fatigue than intermediate types and morning types. The higher chronic work-related fatigue of evening types may be linked to their attenuated level of light exposure and weaker social zeitgebers. These results add credence to the hypothesis that eveningness entails a higher risk of health-impairing behaviors.  相似文献   

3.
Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2?wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100?lux at 470?nm for 20?min) starting 2?h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30?min before and ending 20?min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250?lux), and a dim light (DL) condition for 2?h beginning upon scheduled wake time (<8?lux). Cognitive tasks were performed every 2?h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction.  相似文献   

4.
《Chronobiology international》2013,30(7):1469-1492
Adolescents often report shorter time in bed and earlier wake-up times on school days compared to weekend days. Extending sleep on weekend nights may reflect a “recovery” process as youngsters try to compensate for an accumulated school-week sleep debt. The authors examined whether the circadian timing system of adolescents shifted after keeping a common late weekend “recovery” sleep schedule; it was hypothesized that a circadian phase delay shift would follow this later and longer weekend sleep. The second aim of this study was to test whether modifying sleep timing or light exposure on weekends while still providing recovery sleep can stabilize the circadian system. Two experiments addressed these aims. Experiment 1 was a 4-wk, within-subjects counterbalanced design comparing two weekend sleep schedule conditions, “TYPICAL” and “NAP.” Compared to weeknights, participants retired 1.5?h later and woke 3?h later on TYPICAL weekends but 1?h later on NAP weekends, which also included a 2-h afternoon nap. Experiment 2 was a 2-wk, between-subjects design with two groups (“TYPICAL” or “LIGHT”) that differed by weekend morning light exposure. TYPICAL and LIGHT groups followed the TYPICAL weekend schedule of Experiment 1, and the LIGHT group received 1?h of light (454–484?nm) upon weekend wake-up. Weekend time in bed was 1.5?h longer/night than weeknights in both experimental protocols. Participants slept at home during the study. Dim light melatonin onset (DLMO) phase was assessed in the laboratory before (Friday) and after (Sunday) each weekend. Participants were ages 15 to 17 yrs. Twelve participants (4 boys) were included in Experiment 1, and 33 (10 boys) were included in Experiment 2. DLMO phase delayed over TYPICAL weekends in Experiment 1 by (mean?±?SD) 45?±?31?min and Experiment 2 by 46?±?34?min. DLMO phase also delayed over NAP weekends (41?±?34?min) and did not differ from the TYPICAL condition of Experiment 1. DLMO phase delayed over LIGHT weekends (38?±?28?min) and did not differ from the TYPICAL group of Experiment 2. In summary, adolescents phase delay after keeping a commonly observed weekend sleep schedule. Waking earlier or exposure to short-wavelength light on weekend mornings, however, did not stabilize circadian timing in this sample of youngsters. These data inform chronotherapy interventions and underscore the need to test circadian phase-shifting responses to light in this age group. (Author correspondence: )  相似文献   

5.
The objective of this study was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (DSPD; n?=?16, 15.3?±?1.8 yrs) and unaffected controls (n?=?22, 13.7?±?2.4 yrs) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00 to 05:00?h and 05:00 to 14:00?h were examined, in addition to the 9-h intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent delayed sleep phase subjects received more evening (p?<?.02, 22:00–02:00?h) and less morning (p?<?.05, 08:00–09:00?h and 10:00–12:00?h) light than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p?<?.03, 5–7?h prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p?<?.001 and p?=?.02, respectively) and morning (p?=?.01 and p?<?.001, respectively) light exposure, and later sleep onset times were associated with increased evening exposure (p?<?.001). Increased total sleep time also correlated with increased exposure during the 9?h before sleep onset (p?=?.01), and a later sleep onset time corresponded with decreased light exposure during the same interval (p?<?.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with DSPD. Pre- and post-sleep light exposures do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with DSPD. (Author correspondence: )  相似文献   

6.
ABSTRACT

Despite research indicating that sleep disorders influence reproductive health, the effects of sleep on reproductive hormone concentrations are poorly characterized. We prospectively followed 259 regularly menstruating women across one to two menstrual cycles (the BioCycle Study, 2005–2007), measuring fasting serum hormone concentrations up to eight times per cycle. Women provided information about daily sleep in diaries and chronotype and night/shift work on a baseline questionnaire. We evaluated percent differences in mean hormone concentrations, the magnitude of shifts in the timing and amplitude of hormone peaks, and the risk for sporadic anovulation associated with self-reported sleep patterns and night/shift work. We estimated chronotype scores – categorizing women below and above the interquartile range (IQR) as “morning” and “evening” chronotypes, respectively. For every hour increase in daily sleep duration, mean estradiol concentrations increased by 3.9% (95% confidence interval [CI] 2.0, 5.9%) and luteal phase progesterone by 9.4% (CI 4.0, 15.2%). Receiving less than 7 hours of sleep per day was associated with slightly earlier rises in peak levels for several hormones. Women reporting night/shift work (n = 77) had lower testosterone relative to women employed without night/shift work (percent difference: ?9.9%, CI ?18.4, ?0.4%). Women with morning chronotypes (n = 47) had earlier rises in estradiol during their cycles and potentially an earlier rise in luteinizing hormone. Compared to those who had intermediate chronotypes, women with evening chronotypes (n = 42) had a later luteinizing hormone peak of borderline statistical significance. A reduced risk for sporadic anovulation was suggested, but imprecise, for increasing hours of daily sleep leading up to ovulation (risk ratio 0.79, CI 0.59, 1.06), while an imprecise increased risk was observed for women with morning chronotypes (risk ratio 2.50, CI 0.93, 6.77). Sleep-related hormonal changes may not greatly alter ovarian function in healthy women, but have the potential to influence gynecologic health.  相似文献   

7.
During adolescence, a shift from morningness to eveningness occurs, yet school continues to start early in the morning. Hence, adolescents are at risk for social jetlag, i.e. a discrepancy between biological and social timing. It remains to be determined whether chronotype associates with daily and daytime-specific eating patterns during this potentially critical period. Therefore, the aim of the present study was to investigate whether chronotype is decisive for daily eating patterns [total energy intake (TEI, kcal), total macronutrient intake (% of TEI), eating occasion frequency (n/day), meal frequency (n/day), snack frequency (n/day), duration of nightly fasting], or daytime-specific eating patterns [morning (before 11 am) energy intake (% of TEI), morning macronutrient intake (% of morning energy intake), regular breakfast skipping (no morning energy intake at least on 2 of 3?days, yes/no), evening (after 6 pm) energy intake (% of TEI), evening macronutrient intake (% of evening energy intake), regular dinner skipping (no evening energy intake at least on 2 of 3?days, yes/no)] in German adolescents. Chronotype was assessed by use of the Munich Chronotype Questionnaire and is defined as the midpoint of sleep corrected for sleep-debt accumulated over the workweek (the later the midpoint of sleep, the later the chronotype). A total of 223 participants (10–18?years) provided 346 questionnaires and concurrent 3-day weighed dietary records. Associations between chronotype and eating patterns were analyzed cross-sectionally using multivariable linear and logistic mixed-effects regression models. Adolescents with earlier and later chronotypes did not differ in their daily eating patterns. With respect to daytime-specific eating patterns, 1?h delay in chronotype was associated with 4.0 (95% CI 2.5–6.6) greater odds of regular breakfast skipping (p < 0.0001). In addition, later chronotype was associated with higher evening energy intake (p = 0.0009). In conclusion, our data show that a later chronotype among adolescents is associated with a shift of food consumption toward later times of the day. Hence, adolescents’ eating patterns appear to follow their internal clock rather than socially determined schedules.  相似文献   

8.
ABSTRACT

We examined phase shifts to bright morning light when sleep was restricted by delaying bedtimes. Adolescents (n = 6) had 10-h sleep/dark opportunities for 6 days. For the next 2 days, half were put to bed 4.5 h later and then allowed to sleep for 5.5 h (evening room light + sleep restriction). The others continued the 10-h sleep opportunities (sleep satiation). Then, sleep schedules were gradually shifted earlier and participants received bright light (90 min, ~6000 lux) after waking for 3 days. As expected, sleep satiation participants advanced (~2 h). Evening room light + sleep restriction participants did not shift or delayed by 2–4 h.

Abbreviations: DLMO: dim light melatonin onset.  相似文献   

9.
Rest-activity patterns provide an indication of circadian rhythmicity in the free-living setting. We aimed to describe the distributions of rest-activity patterns in a sample of adults and children across demographic variables. A sample of adults (N = 590) and children (N = 58) wore an actigraph on their nondominant wrist for 7 days and nights. We generated rest-activity patterns from cosinor analysis (MESOR, acrophase and magnitude) and nonparametric circadian rhythm analysis (IS: interdaily stability; IV: intradaily variability; L5: least active 5-hour period; M10: most active 10-hour period; and RA: relative amplitude). Demographic variables included age, sex, race, education, marital status, and income. Linear mixed-effects models were used to test for demographic differences in rest-activity patterns. Adolescents, compared to younger children, had (1) later M10 midpoints (β = 1.12 hours [95% CI: 0.43, 1.18] and lower M10 activity levels; (2) later L5 midpoints (β = 1.6 hours [95% CI: 0.9, 2.3]) and lower L5 activity levels; (3) less regular rest-activity patterns (lower IS and higher IV); and 4) lower magnitudes (β = ?0.95 [95% CI: ?1.28, ?0.63]) and relative amplitudes (β = ?0.1 [95% CI: ?0.14, ?0.06]). Mid-to-older adults, compared to younger adults (aged 18–29 years), had (1) earlier M10 midpoints (β = ?1.0 hours [95% CI: ?1.6, ?0.4]; (2) earlier L5 midpoints (β = ?0.7 hours [95% CI: ?1.2, ?0.2]); and (3) more regular rest-activity patterns (higher IS and lower IV). The magnitudes and relative amplitudes were similar across the adult age categories. Sex, race and education level rest-activity differences were also observed. Rest-activity patterns vary across the lifespan, and differ by race, sex and education. Understanding population variation in these patterns provides a foundation for further elucidating the health implications of rest-activity patterns across the lifespan.  相似文献   

10.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1?±?.1?h (mean?±?SEM) versus 6.6?±?.2?h for workers in the control group (p?=?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: )  相似文献   

11.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1 ± .1 h (mean?±?SEM) versus 6.6 ± .2 h for workers in the control group (p =?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: diane.boivin@douglas.mcgill.ca ).  相似文献   

12.
Epidemiological and cellular biological studies indicate the influence of impaired circadian biological rhythmicity on atherosclerosis. Increased exposure to light at night (LAN) is common in modern life, and LAN exposure is the most important environmental cue for circadian misalignment. However, the association between LAN exposure and atherosclerosis has never been explored in humans. In this cross-sectional study, we measured nighttime light intensity in the bedroom along with the intima-media thickness (IMT) of the common carotid artery using ultrasonography in 700 elderly individuals (mean age 71.6 years). Averages of mean and maximal carotid IMT were 0.88?±?0.15?mm and 1.09?±?0.32?mm, respectively. Median intensity of LAN exposure was 0.74?lux (interquartile range, 0.08–3.34). Both mean and maximal carotid IMT significantly increased across quartiles of increasing LAN intensity (p for trend?=?0.002 and <0.001, respectively). After adjustment for confounding factors, including age, gender, body mass index, current smoking status, hypertension, diabetes, dyslipidemia, sleep medication, estimated glomerular filtration rate, nocturia, bedtime, duration in bed (scotoperiod), day length (photoperiod), urinary 6-sulfatoxymelatonin excretion and daytime and nighttime physical activity, multivariate linear regression models revealed significant associations of LAN exposure with carotid IMT measurements [mean: β, 0.032 (fourth versus first quartiles); 95% confidence intervals (CI), 0.002–0.061; p?=?0.037; maximal: β, 0.100 (fourth versus first quartiles); 95% CI, 0.034–0.165; p?=?0.003]. In conclusion, these results suggested that LAN exposure in home settings is significantly associated with subclinical carotid atherosclerosis in the general elderly population.  相似文献   

13.
Light exposure was measured in 30 permanent night nurses to determine if specific light/dark profiles could be associated with a better circadian adaptation. Circadian adaptation was defined as a significant shift in the timing of the episode of melatonin secretion into the daytime. Light exposure was continuously recorded with ambulatory wrist monitors for 56 h, including 3 consecutive nights of work. Participants were then admitted to the laboratory for 24 h where urine was collected every 2 h under dim light for the determination of 6-sulphatoxymelatonin concentration. Cosinor analysis was used to estimate the phase position of the episode of melatonin secretion. Five participants showed a circadian adaptation by phase delay ("delayed participants") and 3 participants showed a circadian adaptation by phase advance ("advanced participants"). The other 22 participants had a timing of melatonin secretion typical of day-oriented people ("nonshifters"). There was no significant difference between the 3 groups for total light exposure or for bright light exposure in the morning when traveling home. However, the 24-h profiles of light exposure were very distinctive. The timing of the main sleep episode was associated with the timing of light exposure. Delayed participants, however, slept in darker bedrooms, and this had a major impact on their profile of light/dark exposure. Delayed and advanced participants scored as evening and morning types, respectively, on a morningness-eveningness scale. This observation suggests that circadian phase prior to night work may contribute to the initial step toward circadian adaptation, later reinforced by specific patterns of light exposure.  相似文献   

14.
Factors contributing to sleep timing and sleep restriction in daily life include chronotype and less flexibility in times available for sleep on scheduled days versus free days. There is some evidence that these two factors interact, with morning types and evening types reporting similar sleep need, but evening types being more likely to accumulate a sleep debt during the week and to have greater sleep extension on weekend nights. The aim of the present study was to evaluate the independent contributions of circadian phase and weekend-to-weekday variability to sleep timing in daily life. The study included 14 morning types and 14 evening types recruited from a community-based sample of New Zealand adults (mean age 41.1 ± 4.7 years). On days 1–15, the participants followed their usual routines in their own homes and daily sleep start, midpoint and end times were determined by actigraphy and sleep diaries. Days 16–17 involved a 17 h modified constant routine protocol in the laboratory (17:00 to 10:00, <20 lux) with half-hourly saliva samples assayed for melatonin. Mixed model ANCOVAs for repeated measures were used to investigate the independent relationships between sleep start and end times (separate models) and age (30–39 years versus 40–49 years), circadian phase [time of the dim light melatonin onset (DLMO)] and weekday/weekend schedules (Sunday–Thursday nights versus Friday–Saturday nights). As expected on weekdays, evening types had later sleep start times (mean = 23:47 versus 22:37, p < .0001) and end times (mean = 07:14 versus 05:56, p < .0001) than morning types. Similarly on weekend days, evening types had later sleep start times (mean = 00:14 versus 23:07, p = .0032) and end times (mean = 08:56 versus 07:04, p < .0001) than morning types. Evening types also had later DLMO (22:06 versus 20:46, p = .0002) than morning types (mean difference = 80.4 min, SE = 18.6 min). The ANCOVA models found that later sleep start times were associated with later DLMO (p = .0172) and weekend-to-weekday sleep timing variability (p < .0001), after controlling for age, while later sleep end times were associated with later DLMO (p = .0038), younger age (p = .0190) and weekend days (p < .0001). Sleep end times showed stronger association with DLMO (for every 30 min delay in DLMO, estimated mean sleep end time occurred 14.0 min later versus 10.19 min later for sleep start times). Sleep end times also showed greater delays on weekends versus weekdays (estimated mean delay for sleep end time = 84 min, for sleep start time = 28 min). Comparing morning types and evening types, the estimated contributions of the DLMO to the mean observed differences in sleep timing were on weekdays, 39% for sleep start times and 49% for sleep end times; and on weekends, 41% for sleep start times and 34% of sleep end times. We conclude that differences in sleep timing between morning types and evening types were much greater than would be predicted on the basis of the independent contribution of the difference in DLMO on both weekdays and weekend days. The timing of sleep in daily life involves complex interactions between physiological and psychosocial factors, which may be moderated by age in adults aged 30–49 years.  相似文献   

15.
The objective of this study was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (DSPD; n=16, 15.3±1.8 yrs) and unaffected controls (n=22, 13.7±2.4 yrs) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00 to 05:00 h and 05:00 to 14:00 h were examined, in addition to the 9-h intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent delayed sleep phase subjects received more evening (p< .02, 22:00-02:00 h) and less morning (p .05, 08:00-09:00 h and 10:00-12:00 h) light than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p< .03, 5-7 h prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p< .001 and p= .02, respectively) and morning (p= .01 and p< .001, respectively) light exposure, and later sleep onset times were associated with increased evening exposure (p< .001). Increased total sleep time also correlated with increased exposure during the 9 h before sleep onset (p= .01), and a later sleep onset time corresponded with decreased light exposure during the same interval (p< .001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with DSPD. Pre- and post-sleep light exposures do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with DSPD.  相似文献   

16.
The aim of this study was to explore how interindividual differences in circadian type (morningness) and sleep timing regularity might be related to subjective sleep quality and quantity. Self-report circadian phase preference, sleep timing, sleep quality, and sleep duration were assessed in a sample of 62 day-working adults (33.9% male, age 23?48 yrs). The Pittsburgh Sleep Quality Index (PSQI) measured subjective sleep quality and the Sleep Timing Questionnaire (STQ) assessed habitual sleep latency and minutes awake after sleep onset. The duration, timing, and stability of sleep were assessed using the STQ separately for work-week nights (Sunday?Thursday) and for weekend nights (Friday and Saturday). Morningness-eveningness was assessed using the Composite Scale of Morningness (CSM). Daytime sleepiness was measured using the Epworth Sleepiness Scale (ESS). A morning-type orientation was associated with longer weekly sleep duration, better subjective sleep quality, and shorter sleep-onset latency. Stable weekday rise-time correlated with better self-reported sleep quality and shorter sleep-onset latency. A more regular weekend bedtime was associated with a shorter sleep latency. A more stable weekend rise-time was related to longer weekday sleep duration and lower daytime sleepiness. Increased overall regularity in rise-time was associated with better subjective sleep quality, shorter sleep-onset latency, and higher weekday sleep efficiency. Finally, a morning orientation was related to increased regularity in both bedtimes and rise-times. In conclusion, in daytime workers, a morning-type orientation and more stable sleep timing are associated with better subjective sleep quality. (Author correspondence: asoehner@berkeley.edu ).  相似文献   

17.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

18.
ABSTRACT

In humans and most other species, changes in the intensity and duration of light provide a critical set of signals for the synchronisation of the circadian system to the astronomical day. The timing of activity within the 24 h day defines an individual’s chronotype, i.e. morning, intermediate or evening type. The aim of this study was to investigate the associations between environmental light exposure, due to geographical location, on the chronotype of university students. Over 6 000 university students from cities in the Northern Hemisphere (Oxford, Munich and Groningen) and Southern Hemisphere (Perth, Melbourne and Auckland) completed the Munich ChronoType Questionnaire. In parallel, light measures (daily irradiance, timing of sunrise and sunset) were compiled from satellite or ground stations at each of these locations. Our data shows that later mid-sleep point on free days (corrected for oversleep on weekends MFSsc) is associated with (i) residing further from the equator, (ii) a later sunset, (iii) spending more time outside and (iv) waking from sleep significantly after sunrise. However, surprisingly, MSFsc did not correlate with daily light intensity at the different geographical locations. Although these findings appear to contradict earlier studies suggesting that in the wider population increased light exposure is associated with an earlier chronotype, our findings are derived exclusively from a student population aged between 17 and 26 years. We therefore suggest that the age and occupation of our population increase the likelihood that these individuals will experience relatively little light exposure in the morning whilst encountering more light exposure later in the day, when light has a delaying effect upon the circadian system.  相似文献   

19.
《Chronobiology international》2013,30(7):1443-1461
Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12?h days, two 12?h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p<?0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p?=?0.0003). Mean sleep duration for nurses working during the day (8.27?h) was significantly longer than for those working at night (4.78?h, p<?0.0001). An inverse association (p?=?0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of melatonin production to the day among those working at night. Additionally, in this study, sleep duration was not correlated with urinary melatonin levels, suggesting it may not be a good proxy for melatonin production. (Author correspondence: )  相似文献   

20.
To systematically determine the effects of daytime exposure to sleep in darkness on human circadian phase, four groups of subjects participated in 4-day studies involving either no nap (control), a morning nap (0900-1500), an afternoon nap (1400-2000), or an evening nap (1900-0100) in darkness. Except during the scheduled sleep/dark periods, subjects remained awake under constant conditions, i.e., constant dim light exposure (36 lx), recumbence, and caloric intake. Blood samples were collected at 20-min intervals for 64 h to determine the onsets of nocturnal melatonin and thyrotropin secretion as markers of circadian phase before and after stimulus exposure. Sleep was polygraphically recorded. Exposure to sleep and darkness in the morning resulted in phase delays, whereas exposure in the evening resulted in phase advances relative to controls. Afternoon naps did not change circadian phase. These findings indicate that human circadian phase is dependent on the timing of darkness and/or sleep exposure and that strategies to treat circadian misalignment should consider not only the timing and intensity of light, but also the timing of darkness and/or sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号