首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
A bacterium possessing alginate-degrading activity was isolated from marine brown seaweed soup liquefied by salted and fermented anchovy. The isolated strain was designated as Sphingomonas sp. MJ-3 based on the analyses of 16S ribosomal DNA sequences, 16S-23S internal transcribed spacer region sequences, biochemical characteristics, and cellular fatty acid composition. A novel alginate lyase gene was cloned from genomic DNA library and then expressed in Escherichia coli. When the deduced amino acid sequence was compared with the sequences on the databases, interestingly, the cloned gene product was predicted to consist of AlgL (alginate lyase L)-like and heparinase-like protein domain. The MJ-3 alginate lyase gene shared below 27.0% sequence identity with exolytic alginate lyase of Sphingomonas sp. A1. The optimal pH and temperature for the recombinant MJ-3 alginate lyase were 6.5 and 50°C, respectively. The final degradation products of alginate oligosaccharides were analyzed by electrospray ionization mass spectrometry and proved to be alginate monosaccharides. Based on the results, the recombinant alginate lyase from Sphingomonas sp. MJ-3 is regarded as an oligoalginate lyase that can degrade oligoalginate and alginate into alginate monosaccharides.  相似文献   

2.
The naphthalenesulfonate-oxidizing bacterium Sphingomonas sp. BN6 was immobilized in calcium alginate. These beads were incubated under aerobic conditions in a medium with the sulfonated azo dye, Mordant Yellow 3 (MY3), and glucose. The immobilized cells converted MY3, but only a marginal turnover of the dye was found under these conditions with freely suspended cells of Sphingomonas sp. BN6. Under anaerobic conditions, suspended cells of Sphingomonas sp. BN6 reductively cleaved the azo bond of MY3 to 6-aminonaphthalene-2-sulfonate (6A2NS) and 5-aminosalicylate. The turnover of MY3 by the immobilized cells under aerobic conditions resulted in the formation of more than equimolar amounts of 5-aminosalicylate, but almost no (6A2NS) was detected. Cells of Sphingomonas sp. BN6 aerobically oxidize 6A2NS to 5-aminosalicylate. It was therefore concluded that the cells in the anaerobic center of the alginate beads reduced MY3 to 6A2NS and 5-aminosalicylate and that 6A2NS was oxidized to 5-aminosalicylate by those cells that were immobilized in the outer aerobic zones of the alginate beads. The presence of oxygen gradients within the alginate beads was verified by using oxygen micro-electrodes. A coimmobilisate of Sphingomonas sp. BN6 with a 5-aminosalicylate degrading bacterium completely degraded MY3. The immobilized cells also converted the sulfonated azo dyes Amaranth and Acid Red␣1. Received: 6 May 1996 / Received revision: 6 August 1996 / Accepted: 12 August 1996  相似文献   

3.
In Sphingomonas sp. A1, alginate is degraded by alginate lyases to its constituent monosaccharides, which are nonenzymatically converted to an α-keto acid, namely, 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH). The properties of the DEH-metabolizing enzyme and its gene in strain A1 were characterized. In the presence of alginate, strain A1 cells inducibly produced an NADPH-dependent DEH reductase (A1-R) in their cytoplasm. Molecular cloning of the enzyme gene indicated that A1-R belonged to the short-chain dehydrogenase/reductase superfamily and catalyzed the conversion of DEH to 2-keto-3-deoxy-d-gluconic acid most efficiently at around pH 7.0 and 50 °C. Crystal structures of A1-R and its complex with NADP were determined at around 1.6 Å resolution by X-ray crystallography. The enzyme consists of three layers (α/β/α), with a coenzyme-binding Rossmann fold. NADP is surrounded by positively charged residues, and Gly-38 and Arg-39 are crucial for NADP binding. Site-directed mutagenesis studies suggest that Ser-150, Tyr-164, and Lys-168 located around the Rossmann fold constitute the catalytic triad. To our knowledge, this is the first report on molecular cloning and structure determination of a bacterial DEH reductase responsible for alginate metabolism.  相似文献   

4.
The Sphingomonas genus hosts many interesting pollutant-degrading strains. Sphingomonas sp. EPA505 is the best studied polycyclic aromatic hydrocarbon (PAH)-degrading Sphingomonas strain. Based on 16S rRNA gene sequence analysis, Sphingomonas sp. strain EPA505 forms a separate branch in the Sphingomonas phylogenetic tree grouping exclusively PAH-degrading isolates. For specific PCR detection and monitoring of Sphingomonas sp. EPA505 and related strains in PAH-contaminated soils, a new 16S rRNA gene-based primer set was designed. The new primer set was shown to be highly selective for Sphingomonas sp. strain EPA505 as it only amplified DNA from strain EPA505 and not from other tested Sphingomonas strains or soil bacteria not belonging to the Sphingomonas genus. Using DNA extracts of a variety of inoculated PAH-contaminated soils, the primer pair was able to detect EPA505 in concentrations as low as 102 cells per gram of soil. Applying the new primer set, 16S rRNA gene fragments which were 99–100% similar to the corresponding gene of strain EPA505 were amplified from four of five PAH-contaminated soils. On the other hand, no PCR products were obtained from any of five tested uncontaminated soils. The preferential presence of EPA505 related Sphingomonas strains in PAH-contaminated soils with very different contamination profiles and different origin suggests an important role of this type of Sphingomonas in the natural Sphingomonas community colonizing PAH-contaminated sites.  相似文献   

5.
A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.  相似文献   

6.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.  相似文献   

7.
Chronic mucoid Pseudomonas aeruginosa infections are a major scourge in cystic fibrosis patients. Mucoid P. aeruginosa displays structured alginate-rich biofilms that are resistant to antibiotics. Here, we have assessed the efficacy of a panel of alginate lyases in combating mucoid P. aeruginosa biofilms in cystic fibrosis. Albeit we could not demonstrate alginate degradation by alginate lyases in sputum, we demonstrate that the endotypic alginate lyases, CaAly (from Cellulophaga algicola) and VspAlyVI (from Vibrio sp. QY101) and the exotypic alginate lyases, FspAlyFRB (from Falsirhodobacterium sp. alg1), and SA1-IV (from Sphingomonas sp. A1), indeed inhibit biofilm formation by a mucoid P. aeruginosa strain isolated from the sputum of a cystic fibrosis patient with comparative effect to that of the glycoside hydrolase PslG, a promising candidate for biofilm treatment. We believe that these enzymes should be explored for in vivo efficacy in future studies.  相似文献   

8.
The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.  相似文献   

9.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

10.
A total of 800 samples was taken from Taegu province, Korea, where many textile factories provide a source of polyvinyl alcohol (PVA) waste. These samples were screened for PVA-degrading bacteria. A new strain, SA3, was discovered which formed yellow colonies and used PVA as the sole carbon and energy source. Strain SA3 was identified as a Sphingomonas sp., based on the partial nucleotide sequence analysis of 16S ribosomal RNA, the presence of 2-hydroxymyristic acid (14:O 2-OH) and sphingolipids with d-17:0, d-18:0, d-19:1, and d-20:1 as the main dihydrosphingosines. This genus has not previously been reported as a PVA-degrading bacterium. Sphingomonas sp. SA3 needs a symbiote strain, SA2, for PVA degradation as a growth factor producer. In mixed cultures of these strains, the optimum temperature for PVA biodegradation ranged from 30 °C to 35 °C. The optimum pH was 8.0 and the most effective nitrogen source was NH4 +. Electronic Publication  相似文献   

11.
We have studied the concerted degradation of two monochlorodibenzofurans by a bacterial consortium, consisting of the chlorodibenzofurans-cometabolizing and chlorosalicylates-excreting strain Sphingomonas sp RW16, and Pseudomonas sp RW10, which mineralized the released chlorosalicylates. Neither of the organisms was able to grow with chlorodibenzofurans alone. Degradation of 2-chloro- and 3-chlorodibenzofuran proceeded to the end products 5-chloro- and 4-chlorosalicylate, respectively, when the initial dioxygenase of Sphingomonas sp RW 16 attacked the unchlorinated aromatic ring of the heterocyclic dibenzofuran molecule. 2-Hydroxypenta-2,4-dienoate, formed upon meta-cleavage of the intermediary chlorotrihydroxybiphenyls, served as a growth substrate for the sphingomonad. Presumably, most of the chlorosalicylates were excreted and degraded further by Pseudomonas sp RW10. Mineralization of both chlorosalicylates proceeded through a converging pathway, via 4-chlorocatechol, and protoanemonin. Chlorosalicylates were mineralized by the pseudomonad only when their concentration in the culture medium was below 1.5 mM. In the case of initial dioxygenation taking place on the chlorinated aromatic ring, salicylate and chlorinated hydroxypentadienoates should be formed. The metabolic fate of putative chlorohydroxypentadienoates is not clear; ie, they may be channeled into unproductive catabolism and, thus, represent the critical point in the breakdown of the carbon of these two chlorodibenzofurans by Sphingomonas sp RW16. Received 01 May 1999/ Accepted in revised form 26 July 1999  相似文献   

12.
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an “azo reductase.” The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic “azo reductases,” which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.  相似文献   

13.
The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carbon-carbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary α-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary α-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type II ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl)phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18O2 atmosphere were performed. One atom of 18O2 was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary α-carbon.  相似文献   

14.
The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l−1 mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l−1 HgCl2 of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.  相似文献   

15.
Four pentachlorophenol (PCP)-degrading bacteria isolated from geographically diverse areas have been examined in detail as regards their physiology and phylogeny. According to traditional biochemical methods, these strains had been classified as members of the genera Arthrobacter, Flavobacterium, Pseudomonas, and Sphingomonas. The PCP degradation pathway has been studied extensively in Sphingomonas (Flavobacterium) sp strain ATCC 39723 and the first three degradation steps catalyzed by a PCP-4-monooxygenase (PcpB) and a reductive dehalogenase (PcpC) that functions twice are well established. A fourth step appears to involve ring-fission of the aromatic nucleus (PcpA). Molecular analyses revealed that the PCP degradation pathway in these four strains was rather conserved, leading to a phylogenetic analysis using 16S rDNA. The results revealed a much closer phylogenetic relationship between these organisms than traditional classification indicated, placing them into the more recently established genus Sphingomonas where they may even represent a single species. With 16S rDNA analysis, many bacterial isolates involved in degradation of xenobiotic compounds that were previously classified into diverse genera have been reclassified into the genus Sphingomonas. Received 14 April 1999/ Accepted in revised form 20 July 1999  相似文献   

16.
A recombinant Rhizobium strain, PBK3-IS, that constitutively expressed the oxygenase component of carbazole 1,9a-dioxygenase from Sphingomonas sp. strain KA1, was constructed. In the water-cultured siratro rhizospheres inoculated with strain PBK3-IS, 48% of the dibenzofuran was removed within 3 days (initial substrate, 25 μg). Similar results were obtained in soil-cultured siratro rhizospheres using sterile vermiculite. When non-sterile field soils were used instead of sterile vermiculite, the inoculated recombinant strain could grow on the siratro root in all soils tested, except for wet paddy field.  相似文献   

17.
Due to their physicochemical and toxicological properties, polychlorinated dibenzofurans are regarded as a class of compounds providing reason for serious environmental concern. While the nonhalogenated basic structure dibenzofuran is effectively mineralized by appropriate bacterial strains, its polychlorinated derivatives are not. To elucidate the ability of the strain Sphingomonas sp RW1 to metabolize some of these chlorinated derivatives, we performed turnover experiments using 2,7-dichloro- and 2,4,8-trichlorodibenzofuran. As indicated by the oxygen-uptake rates determined for these two chlorinated dibenzofurans, Sphingomonassp RW1 can catabolize these chlorinated dibenzofurans yielding small quantities of oxidation products, which we isolated and subsequently characterized employing GC/MS and 1H- as well as 13C-NMR spectroscopy. In the case of 2,7-dichlorodibenzofuran, two metabolites accumulated, which we identified as 6-chloro- and 7-chloro-2-methyl-4H-chromen-4-one. The single metabolite isolated from the turnover experiments performed with 2,4,8-trichlorodibenzofuran was unequivocally identified as 6,8-dichloro-2-methyl-4H-chromen-4-one. Received 26 April 1999/ Accepted in revised form 23 July 1999  相似文献   

18.
This study aimed to develop technology enhancing the biodegradation efficacy against organophosphorus fungicide with biofilm-forming bacteria in situ. Using the crystal violet staining method, two bacterial strains having biofilm formation capability were isolated and identified as Pseudomonas sp. C7 and Bacillus sp. E5. Compared with the culture of tolclofos-methyl degrader Sphingomonas sp. 224, biofilm formation was improved by co-inoculation with biofilm-forming bacterium Bacillus sp. E5. Evaluated in liquid culture conditions, this two-species mixed consortium was observed to degrade tolclofos-methyl more effectively than Sphingomonas sp. 224 alone, with an approximately 90% degradation efficiency within 48 h of dosing. The improved effectiveness of the consortium biofilm was reflected using soil in situ with an approximately 7% increased degradation ratio over Sphingomonas sp. 224 alone. This is the first report demonstrating improved bioremediation degradation efficacy against tolclofos-methyl exhibited by a consortium biofilm. This work presents a possible effective bioremediation strategy using a specific biofilm composition against pollutants containing organophosphorus compounds in situ.  相似文献   

19.
Effects of low temperature and low oxygen partial pressure on theoccurrence and activity of 2,3,4,6-tetrachlorophenol degrading bacteria in a boreal chlorophenol contaminated groundwater and a full-scale fluidized-bed bioreactor were studied using four polychlorophenol degrading bacterial isolates of different phylogenetic backgrounds. These included an -proteobacterial Sphingomonas sp. strain MT1 isolated from the full-scale bioreactor and three isolates from the contaminated groundwater whichwere identified as -proteobacterial Herbaspirillum sp. K1,a Gram-positive bacterium with high G + C content Nocardioides sp. K44 and an -proteobacterialSphingomonas sp. K74. The Sphingomonasstrains K74 and MT1 and Nocardioides sp. K44 degraded2,4,6-trichlorophenol and 2,3,4,6-tetrachlorophenol as the solecarbon and energy sources. Close to stoichiometric inorganic chloride release with the 2,3,4,6-tetrachlorophenol removal andthe absence of methylation products indicated mineralization. Tetrachlorophenol degradation by the Herbaspirillum sp. K1 was enhanced by yeast extract, malate, glutamate, pyruvate, peptone and casitone. At 8 °C, Sphingomonas sp. K74 had the highest specific degradation rate(max = 4.9 × 10-12 mg h-1 cell-1) for 2,3,4,6-tetrachlorophenol. The Nocardioides strain K44 had the highest affinity (Ks = 0.46 mg l-1) for tetrachlorophenol. K1 and MT1 grew microaerophilically in semisolid glucose medium. Furthermore, the growth of MT1 was inhibited in liquidglucose medium at high oxygen partial pressure indicating sensitivity to accumulating toxic oxygen species. On the other hand, trichlorophenol degradation was not affected by oxygen concentration (2–21%). The isolates K44, K74 and MT1, with optimum growth temperaturesbetween 23 and 25 °C, degraded tetrachlorophenol faster at 8 °C than at room temperature indicating distinctly different temperature optima for chlorophenol degradation and growthon complex media. These results show efficient polychlorophenol degradation by the isolates at the boreal groundwater conditions, i.e., at low temperature and low oxygen concentrations. Differences in chlorophenol degradation and sensitivities to chlorophenols and oxygen among the isolates indicate that the phylogenetically different chlorophenol degraders have found different niches in the contaminated groundwater and thus potential for contaminantdegradation under a variety of saturated subsurface conditions.  相似文献   

20.
Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号