首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the efficiency improvement of three moving bed biofilm reactors (MBBRs) was investigated by inoculation of activated sludge cells (R1), mixed culture of eight strong phenol-degrading bacteria consisted of Pseudomonas spp. and Acinetobacter spp. (R2) and the combination of both (R3). Biofilm formation ability of eight bacteria was assessed initially using different methods and media. Maximum degradation of phenol, COD, biomass growth and also changes in organic loading shock were used as parameters to measure the performance of reactors. According to the results, all eight strains were determined as enhanced biofilm forming bacteria (EBFB). Under optimum operating conditions, more than 90% of initial COD load of 2795 mg L?1 was reduced at 24 HRT in R3 while this reduction efficiency was observed in concentrations of 1290 mg L?1 and 1935 mg L?1, in R1 and R2, respectively. When encountering phenol loading shock—twice greater than optimum amount-R1, R2 and R3 managed to return to the steady-state condition within 32, 24 and 18 days, respectively. SEM microscopy and biomass growth measurements confirmed the contribution of more cells to biofilm formation in R3 followed by R2. Additionally, established biofilm in R3 was more resistant to phenol loading shock which can be attributed to the enhancer role of EBFB strains in this reactor. It has been demonstrated that the bacteria with both biofilm-forming and contaminant-degrading abilities are not only able to promote the immobilization of other favorable activated sludge cells in biofilm structure, but also cooperate in contaminant degradation which all consequently lead to improvement of treatment efficiency.  相似文献   

2.
In this study, anammox bacteria were rapidly enriched in sequencing batch biofilm reactors (SBBRs) with different inoculations. The activated sludge taken from a sequencing batch reactor was used and inoculated to SBBR1, while SBBR2 was seeded with stored anaerobic sludge from an upflow anaerobic fixed bed (2-year stored at 5–15 °C). Nitrogen removal performance, anammox activity, biofilm characteristics and variation of the microbial community were evaluated. The maximum total nitrogen loading rate (NLR) of SBBR1 gradually reached to 1.62 kg?N/(m3/day) with a removal efficiency higher than 88 % and the NLR of SBBR2 reached to 1.43 kg?N/(m3/day) with a removal efficiency of 86 %. SBBR2 was more stable compared to SBBR1. These results, combined with molecular techniques such as scanning electron microscope, fluorescence in situ hybridization, and terminal restriction fragment length polymorphism, indicated that different genera of anammox bacteria became dominant. This research also demonstrates that SBBR is a promising bioreactor for starting up and enriching anammox bacteria.  相似文献   

3.
(2E,4E)-geometry was assigned to 1233A [(7R,2?R,3?R)-11-[3?-(hydroxymethyl)-4?-oxo-2?-oxetanoyl]-3,5,7-trimethyl-2,4-undecadienoic acid (1a)], an inhibitor of cholesterol biosynthesis. Both the 1H- and 13C-NMR spectra of 1a and methyl ester 1b were compared with those of the four geometrical isomers of methyl 3,5-dimethyl-2,4-heptadienoate (2). NOE experiments on 1b revealed the presence of a remarkable NOE between the proton at C-2 and those of the C-17 methyl group. Similar NOE was also observed with (2E,4E)-2. This fact suggests the predominant existence of stable s-cis-rotamers at the single bond between C-3 and C-4 of 1b and of (2E,4E)-2. Some MM2 calculations were attempted to show the presence of two types of stable conformers in the case of the 3,5-dimethyl-2,4-dienoate system.  相似文献   

4.
电穿孔介导质粒DNA肿瘤内转移抑制恶性肿瘤生长与转移   总被引:3,自引:0,他引:3  
利用携带绿色荧光蛋白(green fluorescent protein, GFP)编码基因的表达质粒,测试电穿孔方法介导目的基因活体组织内转移的效率并优化电击参数.在此基础上采用电穿孔技术直接将编码白介素12(IL-12)、白介素2(IL-2)、粒单细胞克隆刺激因子(GM-CSF)等免疫调节因子或反义血管内皮细胞生长因子121(VEGF121)、可溶性血管内皮细胞膜受体(sFlk-1及ExTek)等血管生成抑制因子表达质粒转移至肿瘤局部.实验结果表明电穿孔介导GFP表达质粒肌肉内转移的效率较高,GFP可在肌细胞内持续高水平表达3周以上,而在肿瘤细胞内只能表达4~6 d,但高电压短脉冲电击组肿瘤内GFP阳性细胞数比低电压长脉冲组高2.68倍.多次电击介导IL-12表达质粒转移至肿瘤组织内,可有效地抑制小鼠膀胱癌BTT-gfp、人乳腺癌MCF-7及肝癌SMMC 7721-gfp的生长.MCF-7对血管生成抑制因子基因转移治疗较敏感,单独应用反义VEGF121、sFlk-1或ExTek即显示明确的治疗效果.SMMC 7721-gfp单独应用sFlk-1有效.小鼠膀胱癌对单独应用反义VEGF121、sFlk-1或ExTek治疗效果不理想,但联合应用sFlk-1和ExTek仍然可以有效地抑制肿瘤生长与转移,甚至使肿瘤缩小或消失.提示电穿孔技术是一项高效、安全、经济的体内基因转移方法.  相似文献   

5.
Siu-Wah Tse  Jian Yu 《Biofouling》2013,29(4):223-233

Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml?1 carrier) in comparison with PVA particles (4.8 mg VS ml?1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factor in the thicker biofilms (effectiveness factor η = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml?1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l?1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80 - 81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to ~80% by the augmented system.  相似文献   

6.
In this study, attempts were made to develop a protocol for regeneration of transgenic plants via Agrobacterium tumefaciens-mediated transformation of leaf segments from ‘Valencia’ sweet orange (Citrus sinensis L. Osbeck) using gfp (green fluorescence protein) as a vital marker. Sensitivity of the leaf segments regeneration to kanamycin was evaluated, which showed that 50 mg l−1 was the best among the tested concentrations. In addition, factors affecting the frequency of transient gfp expression were optimized, including leaf age, Agrobacterium concentration, infection time, and co-cultivation period. Adventitious shoots regenerated on medium containing Murashige and Tucker basal medium plus 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.5 mg l−1 6-benzyladenine (BA) and 0.5 mg l−1 kinetin (KT). The leaf segments from 3-month-old in vitro seedlings, Agrobacterium concentration at OD600 of 0.6, 10-min immersion, and co-cultivation for 3 days yielded the highest frequency of transient gfp expression, shoots regeneration response and transformation efficiency. By applying these optimized parameters we recovered independent transformed plants at the transformation efficiency of 23.33% on selection medium (MT salts augmented with 0.5 mg l−1 BA, 0.5 mg l−1 KT, 0.1 mg l−1 NAA, 50 mg l−1 kanamycin and 250 mg l−1 cefotaxime). Expression of gfp in the leaf segments and regenerated shoots was confirmed using fluorescence microscope. Polymerase chain reaction (PCR) analysis using gfp and nptII gene-specific primers further confirmed the integration of the transgene in the independent transgenic plants. The transformation methodology described here may pave the way for generating transgenic plants using leaf segments as explants.  相似文献   

7.
The O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of the marine bacterium Arenibacter palladensis type strain KMM 3961T and studied by chemical methods and 1H and 13C NMR spectroscopy including 2D COSY, TOCSY, 1H,13C HSQC, and HMBC experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units containing two mannose residues (Man), one 2-acetamido-2-deoxy-D-galactose residue (D-GalNAc), and one 2-acetamido-2-deoxy-L-galacturonic acid residue (L-GalNAcA) and having the following structure: ? 2) - a- D - Manp - (1 ? 6) - a- D - Manp - (1 ? 4) - a- L - GalpNAcA - (1 ? 3) - b- D - GalpNAc - (1 ?\to 2) - \alpha - D - Manp - (1 \to 6) - \alpha - D - Manp - (1 \to 4) - \alpha - L - GalpNAcA - (1 \to 3) - \beta - D - GalpNAc - (1 \to.  相似文献   

8.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

9.
Abstract

P22 phage >105 PFU ml?1 could be used to inhibit Salmonella Typhimurium biofilm formation by 55–80%. Concentrations of EDTA >1.25?mM and concentrations of nisin >1,200?µg ml?1 were also highly effective in reducing S. Typhimurium biofilm formation (≥96% and ≥95% reductions were observed, respectively). A synergistic effect was observed when EDTA and nisin were combined whereas P22 phage in combination with nisin had no synergistic impact on biofilm formation. Triple combination of P22 phage, EDTA and nisin could be also used to inhibit biofilm formation (≥93.2%) at a low phage titer (102 PFU ml?1), and low EDTA (1.25?mM) and nisin (9.375?µg ml?1) concentrations. A reduction of 70% in the mature biofilm was possible when 107 PFU ml?1 of P22 phage, 20?mM of EDTA and 150?μg ml?1 of nisin were used in combination. This study revealed that it could be possible to reduce biofilm formation by S. Typhimurium by the use of P22 phage, EDTA and nisin, either alone or in combination. Although, removal of the mature biofilm was more difficult, the triple combination could be successfully used for mature biofilm of S. Typhimurium.  相似文献   

10.
Valsa ceratosperma, which is the pathogenic fungus of apple canker, was grown in a synthetic medium. The neutral extract from the culture filtrate was chromatographed on a silica gel column to give five isocoumarins. Their structures were determined by MS, UV, IR, 1H and 13C NMR, and CD spectra. Three of them were known compounds; ( ? )-5-methylmellein (1), ( ? )-5-carboxylmellein (2) and ( ? )-5-hydroxylmethylmellein (3). Since the absolute configurations at C-3 in 2 and 3 were not known until now, both were determined to be R by chemical correlations. The two were new compounds; ( + )-(3R,4S)-trans-4-hydroxy-5-methylmellein (4) and ( ? )-(3R,4R)-cis-4-hydroxy-5-methylmellein (5). All the five compounds showed phytotoxicity in a bioassay using detached apple shoots and lettuce seedlings.  相似文献   

11.
Oligonucleotide probes were used to study the structure of anaerobic granular biofilm originating from a pentachlorophenol-fed upflow anaerobic sludge bed reactor augmented with Desulfitobacterium frappieri PCP-1. Fluorescence in situ hybridization demonstrated successful colonization of anaerobic granules by strain PCP-1. Scattered microcolonies of strain PCP-1 were detected on the biofilm surface after 3 weeks of reactor operation, and a dense outer layer of strain PCP-1 was observed after 9 weeks. Hybridization with probes specific for Eubacteria and Archaea probes showed that Eubacteria predominantly colonized the outer layer, while Archaea were observed in the granule interior. Mathematical simulations showed a distribution similar to that observed experimentally when using a specific growth rate of 2.2 day−1 and a low bacterial diffusion of 10−7 dm2 day−1. Also, the simulations showed that strain PCP-1 proliferation in the outer biofilm layer provided excellent protection of the biofilm from pentachlorophenol toxicity.  相似文献   

12.
The expressions of nine nitrogen assimilation‐associated genes, NRT2, NAR1, NIA2, NIR, GLN2, GLSF, GSN1, GDH, and AAT2, in the microalga Isochrysis zhangjiangensis were investigated to unveil the effects of limitations of various nitrogen sources (NaNO3, NH4Cl, NaNO2, and an amino acid mixture) on the microalgae. The results demonstrated that the NRT2, NAR1, GLN2, GSN1, and AAT2 genes were highly expressed in lipid‐rich microalgae under inorganic nitrogen‐deficient conditions and they decreased after nitrogen resupply. Significant increases in the expressions of NAR1, GLN2, and GLSF were found in nitrate‐depleted microalgae, whereas significant increases in the expressions of NRT2, NAR1, GLN2, and GSN1 were found in nitrite‐depleted microalgae. Significant increases in the expressions of only NRT2 and GSN1 were found in ammonium‐depleted microalgae (P < 0.05). Except for the NRT2, other genes were expressed at lower levels under amino acid‐deficient conditions compared with amino acid‐sufficient controls. The expression of the NIA2 gene decreased in nitrogen‐depleted microalgae regardless of the initial nitrogen source. However, the results of fatty acid analyses showed that the features of fatty acid profiles followed a similar mode, in which the percentage compositions of C16:0 and C18:1Δ9 increased in nitrogen‐depleted cells and that of C16:1Δ9, C18:3Δ9,12,15, C18:4Δ6,9,12,15, and C18:5Δ3,6,9,12,15 decreased, regardless of the type of nitrogen source applied. It was also found that the epiphytic bacterium Alteromonas macleodii played a particularly important role in releasing microalgae from the stress of amino acid deficiency. These findings also provide a foundation for regulating microalgal lipid production through manipulation of the nitrogen assimilation‐associated genes.  相似文献   

13.
H Broch  D Vasilescu 《Biopolymers》1979,18(4):909-930
This paper reports a systematic PCILO study of the conformation of the nucleic acid backbone. The authors principally studied the ω′ and ω phosphodiester torsion angles of the disugar triphosphate model as a simultaneous function of (1) the sugar nature, ribose or deoxyribose, (2) the different combinations of the sugar ring puckers C(2′)-endo-C(2′)-endo, C(3′)-endo-C(3′)-endo, C(3′)-endo-C(2′)-endo, and C(2′)-endo-C(3′)-endo, and (3) the different conformations around the ψ(C4′–C5′) exocyclic bond. The dependence of the (ω′,ω) conformational energy maps upon these different factors, is discussed. The results are in very good agreement with the observed structures of ribonucleic (RNA10, RNA11, A′-RNA12, tRNAPhe) and deoxyribonucleic acids (D-DNA, C-DNA 9.3, B-DNA 10, A-DNA 11). Thus the validity of this model, the disugar triphosphate unit, is ensured. The main conclusions that can be drawn from this systematic study are the following:
  • 1 The torsion around P-05′ (angle ω) is, as a general rule, more flexible than the torsion around P-03′ (angle ω′).
  • 2 There is no notable difference between the ribose–triphosphate units and the deoxyribose–triphosphate units for the C(3′)-endo–C(3′)-endo and C(3′)-endo–C(2′)-endo sugar puckers.
  • 3 The deoxyribose–triphosphate units with C(2′)-endo–C(2′)-endo and C(2′)-endo–C(3′)-endo sugar puckers show much more ω′ flexibility than the ribose–triphosphate units with the same sugar puckers and cis position for the 2′hydroxyl group.
  • 4 The preferred values of ω′ are independent of the sugar nature (ribose or deoxyribose) and of ψ values; they are correlated with the sugar pucker of the first sugar-phosphate unit:
    • C(3′)-endo-C(3′)-endo and C(3′)-endo-C(2′)-endo puckers ? ω′ ? 240° (g? region)
    • C(2′)-endo-C(2′)-endo and C(2′)-endo-C(3′)-endo puckers ? ω′ 180° (t region)
  • 5 The preferred values of ω are independent of the nature and the puckering of the sugars; they are correlated with the rotational state of the torsion angle ψ(C4′–C5′): ψ ? 60° (gg) ? ω ? 300° (g?), ψ ? 180° (gt) or 300° (tg) ? ω ? 60° (g+)
  相似文献   

14.
 A denitrifying bacterial biofilm population established on a polypropylene substratum of a fixed-film reactor was characterized by microscopy, scanning electron microscopy and immunofluorescence after 120 days of operation. The reactor, operated at pH 7.0, 22°C, and −180 mV with synthetic wastewater containing methanol/nitrate, achieved a denitrification rate of 0.24 mol NO- 3 l-1 day-1 with a removal efficiency for nitrate of 95%–99% at an organic loading rate of 0.325 mol methanol l-1 day-1. The gas produced contained 2%–3% (v/v) methane and 3%–4% (v/v) carbon dioxide in addition to nitrogen. The biofilm contained mainly cells of Methanobrevibacter arboriphilus antigenically related to strain DC, short, flagellated, gram-negatively staining rods of Pseudomonas sp. antigenically related to Pseudomonas stutzeri strain AN11, non-identified pink-pigmented rods and small lemon-shaped cells with mono- and bipolar appendages resembling prosthecate Hyphomicrobium sp. The biofilm analysis provided evidence for a syntrophy between the denitrifying, methylotrophic, bacterial consortium and hydrogenotrophic methanogens, which were identified by antigenic fingerprinting with 17 antibody probes. Received: 11 July 1994/Received revision: 23 September 1994/Accepted: 28 September 1994  相似文献   

15.
This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four F4-neuroprostanes (F4-NeuroPs) and four F2-dihomo-isoprostanes (F2-dihomo-IsoPs) quantified in 24-h urine. The quantification was carried out by ultra high pressure liquid chromatography-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to altitude training (AT, n?=?8) and a group submitted to sea level training (SLT) (n?=?8), with a control group (Cg) of non-athletes (n?=?8). After the experimental period, the AT group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 5.2?±?1.4?μg/mL 24?h?1 to 6.6?±?0.6?μg/mL 24?h?1), ent-7(RS)-7-F2t-dihomo-IsoP (from 6.6?±?1.7?μg/mL 24?h?1 to 8.6?±?0.9?μg/mL 24?h?1), and ent-7-epi-7-F2t-dihomo-IsoP (from 8.4?±?2.2?μg/mL 24?h?1 to 11.3?±?1.8?μg/mL 24?h?1) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-F4t-NeuroP (8.4?±?1.7?μg/mL 24?h?1) and 10-F4t-NeuroP (5.2?±?2.9?μg/mL 24?h?1) were detected in this group. For the Cg and SLT groups, no significant changes had occurred at the end of the two-week experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-isoPs-related oxidative damage of the central nervous system compared to similar training at sea level.  相似文献   

16.
In this work, the influence of toluene gas concentration on the isolation of toluene degrading microbial communities from activated sludge was studied. Toluene biodegradation at gas phase concentration of 10?g?m?3 (R1) resulted in process instability with removal efficiencies (RE) lesser than 33?%, while operation at toluene gas phase concentrations of 300?mg?m?3 (R2) and 11?mg?m?3 (R3) was stable with RE ranging from 74 to 94?%. The consortium isolated in R1 exhibited the highest tolerance toward toluene but the lowest biodegradation performance at trace level VOC concentrations. Despite R2 and R3 showed a similar sensitivity toward toluene toxicity, the microbial community from R2 supported the most efficient toluene biodegradation at trace level VOC concentrations. The Shannon-Wiener index showed an initial biodiversity decrease from 3.2 to 2.0, 1.9 and 2.7 in R1, R2 and R3, respectively. However, while R2 and R3 were able to recover their initial diversity levels by day 48, this loss in diversity was permanent in R1. These results showed that traditional inoculum isolation/acclimation techniques based on the exposure of the inoculum to high VOC concentrations, where toxicity tolerance plays a key role, may result in a poor abatement performance when the off-gas stream is diluted.  相似文献   

17.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

18.
Two sequencing batch reactors were synchronously operated to investigate the effect of manganese (II) (Mn2+) augmentation on aerobic granulation. Reactor 1 (R1) was added with 10 mg/L Mn2+, while there was no Mn2+ augmentation in reactor 2 (R2). Results showed that R1 had a faster granulation process than R2 and R1 performed better in chemical oxygen demand (COD) and ammonium nitrogen (NH4+–N) removal efficiencies. Moreover, the mature granules augmented with Mn2+ behaved better on their physical characteristics and size distributions, and they also had higher production of extracellular polymeric substances (EPS) content. The result of three-dimensional excitation and emission matrix fluorescence showed that Mn2+ had the function of causing organic material diversity (especially proteins diversity) in EPS fraction from granules. Polymerase chain reaction and denaturing gradient gel electrophoresis techniques were employed to analyze the microbial and genetic characteristics in mature granules. The results exhibited that Mn2+ augmentation was mainly responsible for the higher microbial diversity of granules from R1 compared with that from R2. Uncultured sludge bacterium A16 (AF234726) and Rhodococcus sp. WTZ-R2 (HM004214) were the major species in R1, while only uncultured sludge bacterium A16 (AF234726) in R2. Moreover, there were eight species of organisms found in both two aerobic granules, and three species were found only in aerobic granules from R1. It could be concluded that Mn2+ could enhance the sludge granulation process and have a key effect role on the biological properties during the sludge granulation.  相似文献   

19.
Rice stripe virus (RSV) is one of the most destructive pathogens of rice (Oryza sativa L.) in East Asia. Development of resistant varieties offers a more economical and efficient way to control this disease. In the present study, tests using four inoculation methods were used on 85 backcross inbred lines of Sasanishiki (japonica)/Habataki (indica) to map quantitative trait loci (QTL) conferring resistance to RSV. One QTL on chromosome 3 and two on chromosome 11 were detected, jointly explaining 18?C47?% of the trait variance. The QTL (qSTV11 HAB -1 and qSTV11 HAB -2) on chromosome 11 were closely linked, and mapped in the intervals G257-RM457 and RM457-RM187, respectively. The stabilities of qSTV11 HAB -1 and qSTV11 HAB -2 were validated using a set of 38 established chromosome segmental substitution lines. The two QTL, when combined, showed higher resistance than either of them alone in both field and mass inoculation tests, indicating additivity. Fine mapping of the two genes was carried out using 147 recombined F2:3 lines selected from 2,750 secondary F2 plants of the cross Sasanishiki/SL437. Four SSR (simple sequence repeat) and eight InDel (insertion?Cdeletion) markers newly developed to fine-map the two loci. According to the Nipponbare genomic sequence, qSTV11 HAB -1 was localized to a 333.2-kb interval which was about 230?kb from the well-known Stvb-i. The other locus, qSTV11 HAB -2, which appears to be a new QTL for RSV resistance, was delimited to a 203.9-kb region. Four flanking markers (R15, RM209, R69 and R73) can be used in marker-assisted selection. These results provide an opportunity for map-based cloning of qSTV11 HAB -1 and qSTV11 HAB -2, thereby promoting the breeding program of RSV resistance.  相似文献   

20.
[背景]养猪废水作为高浓度有机废水,是导致我国农业面源污染的主要因素之一.目前采用菌藻共生系统处理养猪废水越来越受到关注,与传统序批式反应器(Sequencing Batch Reactor,SBR)相比,藻辅助SBR具有提高脱氮除磷效果、增加污泥活性和降低能源消耗的特点.[目的]针对SBR中菌藻共生系统对养猪废水脱氮...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号