首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Helicobacter pylori represents an important pathogen involved in diseases ranging from gastritis, peptic ulceration, to gastric malignancies. Prominent virulence factors comprise the vacuolating cytotoxin VacA and the cytotoxin‐associated genes pathogenicity island (cagPAI)‐encoded type IV secretion system (T4SS). The T4SS effector protein CagA can be translocated into AGS and other gastric epithelial cells followed by phosphorylation through c‐Src and c‐Abl tyrosin kinases to hijack signalling networks. The duodenal cell line AZ‐521 has been recently introduced as novel model system to investigate CagA delivery and phosphorylation in a VacA‐dependent fashion. In contrast, we discovered that AZ‐521 cells display a T4SS incompetence phenotype for CagA injection, which represents the first reported gastrointestinal cell line with a remarkable T4SS defect. We proposed that this deficiency may be due to an imbalanced coexpression of T4SS receptor integrin‐β1 or carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs), which were described recently as novel H. pylori receptors. We demonstrate that AZ‐521 cells readily express integrin‐β1, but overexpression of integrin‐β1 constructs did not restore the T4SS defect. We further show that AZ‐521 cells lack the expression of CEACAMs. We demonstrate that genetic introduction of either CEACAM1 or CEACAM5, but not CEACAM6, in AZ‐521 cells is sufficient to permit injection and phosphorylation of CagA by H. pylori to degrees observed in the AGS cell model. Expression of CEACAM1 or CEACAM5 in infected AZ‐521 cells was also accompanied by tyrosine dephosphorylation of the cytoskeletal proteins vinculin and cortactin, a hallmark of H. pyloriinfected AGS cells. Our results suggest the existence of an integrin‐β1‐ and CEACAM1‐ or CEACAM5‐dependent T4SS delivery pathway for CagA, which is clearly independent of VacA. The presence of two essential host protein receptors during infection with H. pylori represents a unique feature in the bacterial T4SS world. Further detailed investigation of these T4SS functions will help to better understand infection strategies by bacterial pathogens.  相似文献   

2.
Helicobacter pylori is a highly successful bacterial pathogen of humans, infecting the stomach of more than half of the worlds population. The H. pylori infection results in chronic gastritis, eventually followed by peptic ulceration and, more rarely, gastric cancer. H. pylori has developed a unique set of virulence factors, actively supporting its survival in the special ecological niche of the human stomach. Vacuolating cytotoxin (VacA) and cytotoxin-associated antigen A (CagA) are two major bacterial virulence factors involved in host cell modulation. VacA, so far mainly regarded as a cytotoxin of the gastric epithelial cell layer, now turns out to be a potent immunomodulatory toxin, targeting the adapted immune system. Thus, in addition to the well-known vacuolating activity, VacA has been reported to induce apoptosis in epithelial cells, to affect B lymphocyte antigen presentation, to inhibit the activation and proliferation of T lymphocytes, and to modulate the T cell-mediated cytokine response.  相似文献   

3.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   

4.
《Autophagy》2013,9(3):370-379
Host cell responses to Helicobacter pylori infection are complex and incompletely understood. Here, we report that autophagy is induced within human-derived gastric epithelial cells (AGS) cells in response to H. pylori infection. These autophagosomes were distinct and different from the large vacuoles induced during H. pylori infection. Autophagosomes were detected by transmission electron microscopy, conversion of LC3-I to LC3-II, GFP-LC3 recruitment to autophagosomes, and depended on Atg5 and Atg12. The induction of autophagy depended on the vacuolating cytotoxin (VacA) and, moreover, VacA was sufficient to induce autophagosome formation. The channel forming activity of VacA was necessary for inducing autophagy. Intracellular VacA partially co-localized with GFP-LC3, indicating that the toxin associates with autophagosomes. The inhibition of autophagy increased the stability of intracellular VacA, which in turn resulted in enhanced toxin-mediated cellular vacuolation. These findings suggest that the induction of autophagy by VacA may represent a host mechanism to limit toxin-induced cellular damage.  相似文献   

5.
The human gastric bacterial pathogen Helicobacter pylori has been implicated in type B gastritis, peptic ulceration and gastric adenocarcinoma. Here we report on the cloning and genetic characterization of an H. pylori gene named vacA, which encodes the vacuolating cytotoxin VacA, a novel type of antigenic bacterial toxin that induces the formation of intracellular vacuoles in epithelial cells. The vacuolating cytotoxin activity is expressed by a subset of clinical isolates (Vac+), all of which produce the 87kDa cytotoxin antigen, but strains which produce neither the activity nor the cytotoxin protein (Vac) also carry the gene, Isogenic H. pylori mutants in vacA generated by transposon shuttle mutagenesis produce neither the VacA antigen nor a vacuolating activity in a cell culture model. The vacA gene itself encodes a precursor protein of 139.6 kDa consisting of a 33-amino acid signal sequence, the 87 kDa cytotoxin and a 50 kDa C-termlnal domain with features typical of a bacterial outer membrane protein. The VacA precursor shows no significant primary sequence homology with any previously reported protein, but its structural organization closely resembles the IgA protease-type of exoprotein produced by pathogenic Neisseriae and Haemophilus species. Our current data support a model for secretion of the cytotoxin through the two bacterial membranes which involves the 50 kDa domain for outer membrane translocation with subsequent proteolytic cleavage and release of the mature 87 kDa cytotoxin into the extracellular environment.  相似文献   

6.
Background: Colonization of the gastric mucosa by Helicobacter pylori is often associated with chronic gastric pathologies in humans. Development of disease correlates with the presence of distinct bacterial pathogenicity factors, such as the cag type IV secretion system (cag‐T4SS), the vacuolating cytotoxin (VacA), or the ability of the bacteria to acquire and incorporate cholesterol from human tissue. Materials and Methods: The in vitro growth of H. pylori requires media (Brucella broth) complemented with vitamins and horse serum or cyclodextrins, prepared as blood agar plates or liquid cultures. Liquid cultures usually show a slow growth. Here, we describe the successful growth of H. pylori strains 26695, P217, P12, and 60190 on serum‐free media replacing serum components or cyclodextrins with a commercially available cholesterol solution. Results: The effects of cholesterol as a substitute for serum or cyclodextrin were rigorously tested for growth of H. pylori on agar plates in vitro, for its general effects on bacterial protein synthesis (the proteome level), for H. pylori’s natural competence and plasmid DNA transfer, for the production of VacA, and the general function of the cag‐pathogenicity island and its encoded cag‐T4SS. Generally, growth of H. pylori with cholesterol instead of serum supplementation did not reveal any restrictions in the physiology and functionality of the bacteria except for strain 26695 showing a reduced growth on cholesterol media, whereas strain 60190 grew more efficient in cholesterol‐ versus serum‐supplemented liquid medium. Conclusions: The use of cholesterol represents a considerable option to serum complementation of growth media for in vitro growth of H. pylori.  相似文献   

7.
Helicobacter pylori is the causative agent of gastric pathologies ranging from chronic gastritis to peptic ulcers and even cancer. Virulent strains carrying both the cag pathogenicity island ( cag PAI) and the vacuolating cytotoxin VacA are key players in disease development. The ca gPAI encodes a type IV secretion system (T4SS) which forms a pilus for injection of the CagA protein into gastric epithelial cells. Injected CagA undergoes tyrosine phosphorylation and induces actin-cytoskeletal rearrangements involved in host cell scattering and elongation. We show here that the CagA-induced responses can be inhibited in strains expressing highly active VacA. Further investigations revealed that VacA does not interfere with known activities of phosphorylated CagA such as inactivation of Src kinase and cortactin dephosphorylation. Instead, we demonstrate that VacA exhibits inactivating activities on the epidermal growth factor receptor EGFR and HER2/Neu, and subsequently Erk1/2 MAP kinase which are important for cell scattering and elongation. Inactivation of vacA gene, downregulation of the VacA receptor RPTP-α, addition of EGF or expression of constitutive-active MEK1 kinase restored the capability of H. pylori to induce the latter phenotypes. These data demonstrate that VacA can downregulate CagA's effects on epithelial cells, a novel molecular mechanism showing how H. pylori can avoid excessive cellular damage.  相似文献   

8.
The serine/threonine kinase Par1 is a core component of the machinery that sets up polarity in the embryo and regulates cell fate decisions but its role in the homeostasis of adult tissues is poorly understood. Inhibition of Par1 by the bacterium Helicobacter pylori (H. pylori) represents the only established pathology that affects Par1 function in an adult epithelium. Thus, during chronic H. pylori infection of the gastric mucosa Par1 is one of the targets of the non-obligate H.pylori cytotoxic protein and oncogene CagA, which stimulates inflammation and triggers morphological changes, both believed to contribute to the gastric cancer risk imposed by H. pylori infection. Based on Par1’s role in cell polarity, it has been speculated that Par1 inhibition affects epithelial polarity. Here we report the unexpected finding that CagA-mediated Par1-inhibition promotes the generation of DNA Double Strand Breaks in primary gastric epithelial cells, which likely contributes to the reported accumulation of mutations in chronically infected mucosal cells.

Abbreviations: AGS: human gastric adenocarcinoma cell line; CM: CagA Multimerization (and Par1 binding) domain; H. pylori: Helicobacter pylori; DSB: Double Strand Break; HGECs: human (primary) gastric epithelial cells; IB: immunoblot; IF: immunofluorescence; MOI: Multiplicity of Infection; ROS: reactive oxygen species; Par1: Partitioning Defective 1 kinase; WT: wild type  相似文献   


9.
Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.  相似文献   

10.
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA “on” and “off” motifs. Proteomics analysis was performed on AGS cell pre‐infection and postinfection with Hpylori oipA “on” and “off” strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down‐regulated postinfection with oipA “off” strains comparing to oipA “on” strains. Furthermore, oipA “off” and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell‐cycle arrest than oipA “on” strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of Hpylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA “on” strains predominates.  相似文献   

11.
In this review, we shall focus on the last year progression understanding the pathogenesis of Helicobacter pylori infection in the light of recent data related to adaptation of H pylori to the harsh acidic environment in the stomach, colonization of gastric mucosa via interaction with mucin 5 (MUC5AC) and other host cell receptors, the ability to form biofilm, interference with the host metabolic pathways, and induction of neuroimmune cross‐talk as well as downregulation of gastric barrier homeostasis and its consequences for the disease development. The role of the membrane vesicles of these bacteria has been emphasized as an important source of virulence factors. Furthermore, we shall describe molecular and functional studies on new aspects of VacA and CagA virulence, including the role of urease in the upregulation of VacA toxicity, an epithelial‐mesenchymal transition mediated by CagA, and the role of interaction of HopQ adhesin with carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs) in CagA translocation into the host cells by the type IV secretion system (T4SS). The role of molecular mimicry between a common sequence (ATVLA) of H pylori heat shock protein (Hsp) B and human Hsp60 in the induction of potentially autoreactive antibodies is discussed. All these new data illustrate further progress in understanding H pylori pathogenicity and facilitate the search for new therapeutic targets as well as development of immunoprophylaxis methods based on new chimeric UreB and HpA proteins.  相似文献   

12.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   

13.
Secreted proteins are of general interest from the perspective of bacteria-host interaction. The gastric bacterial pathogen Helicobacter pylori uses a set of secreted and translocated proteins--including outer membrane adhesins, secreted extracellular enzymes and translocated effector proteins--to adapt to its extraordinary habitat, the gastric mucosa. Two major virulence factors of H. pylori are the vacuolating cytotoxin (VacA) and the cag type-IV secretion system and its translocated effector protein, cytotoxin-associated antigen A (CagA). VacA targets not only epithelial cells, but also cells of the immune system and induces immunosuppression. CagA has been shown to interact with a growing set of eucaryotic signaling molecules in phosphorylation-dependent and -independent ways.  相似文献   

14.
Introduction: Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world’s population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers.

Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection.

Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.  相似文献   


15.
The vacuolating cytotoxin of Helicobacter pylori   总被引:22,自引:1,他引:21  
Helicobacter pylori, the causative agent of chronic superficial gastritis and duodenal ulcer disease in humans, produces a unique cytotoxin (VacA) that induces cytoplasmic vacuolation in eukaryotic cells. The structural organization and processing of the vacuolating cytotoxin are characteristic of a family of proteins exemplified by Neisseria gonorrhoeae IgA protease. Although only 50% of H. pylori isolates produce detectable cytotoxin activity in vitro, vacA homologues are present in virtually all isolates. Several families of vacA alleles have been identified, and there is a strong correlation between presence of specific vacA genotypes, cytotoxin activity, and peptic ulceration. Experiments in a mouse model of H. pylori-induced gastric damage indicate that the cytotoxin plays an important role in inducing gastric epithelial necrosis.  相似文献   

16.
Nam YH  Ryu E  Lee D  Shim HJ  Lee YC  Lee ST 《Helicobacter》2011,16(4):276-283
Background: Infection of cagA‐positive Helicobacter pylori is associated with increased expression of MMPs in gastric epithelial cells. The role of phosphorylated CagA in the induction of MMP‐9, a protease‐degrading basement membrane, in gastric epithelial cells has not been clearly defined yet. The aim of this study is to analyze whether the presence of CagA and its phosphorylation status play a role in increased expression of MMP‐9 in gastric epithelial cells. Materials and Methods: Induction of MMP‐9 secretion was analyzed in gastric epithelial AGS cells harboring CagA with or without EPIYA motif, which is injected by H. pylori or ectopically expressed. In addition, signaling pathways involved in the CagA‐dependent MMP‐9 production have been studied. Results: The 147C strain of H. pylori expressing tyrosine‐phosphorylated CagA (EPIYA present) induced higher MMP‐9 secretion by AGS cells than the 147A strain expressing non‐tyrosine‐phosphorylated CagA (EPIYA absent). In addition, in bacteria‐free CagA‐inducible AGS cells, expression of wild‐type CagA induced more MMP‐9 secretion than phosphorylation‐resistant CagA. Inhibition of CagA phosphorylation by the Src family kinase inhibitor PP1 downregulated CagA‐mediated MMP‐9 secretion. Knockdown of SHP‐2 phosphatase dramatically reduced MMP‐9 secretion. ERK inhibitors, PD98059 and U0126, and NF‐κB pathway inhibitors, sulfasalazine and N‐acetyl‐l ‐cysteine, also inhibited MMP‐9 expression. Conclusion: These results support a model whereby the EPIYA motif of CagA is phosphorylated by Src family kinases in gastric epithelial cells, which initiates activation of SHP‐2. In addition, they suggest that the resultant activation of ERK pathway along with CagA‐dependent NF‐κB activation is critical for the induction of MMP‐9 secretion.  相似文献   

17.
Background. Helicobacter pylori induces gastric damage and may be involved in the pathogenesis of gastric cancer. H. pylori‐vacuolating cytotoxin, VacA, is one of the important virulence factors, and is responsible for H. pylori‐induced gastritis and ulceration. The aim of this study is to assess whether several naturally occurring polyphenols inhibit VacA activities in vitro and in vivo. Materials and Methods. Effects of polyphenols on VacA were quantified by the inhibition of: 1, vacuolation; 2, VacA binding to AZ‐521 or G401 cells or its receptors; 3, VacA internalization. Effects of hop bract extract (HBT) containing high molecular weight polymerized catechin on VacA in vivo were investigated by quantifying gastric damage after oral administration of toxins to mice. Results. HBT had the strongest inhibitory activity among the polyphenols investigated. HBT inhibited, in a concentration‐dependent manner: 1, VacA binding to its receptors, RPTPα and RPTPβ; 2, VacA uptake; 3, VacA‐induced vacuolation in susceptible cells. In addition, oral administration of HBT with VacA to mice reduced VacA‐induced gastric damage at 48 hours. In vitro, VacA formed a complex with HBT. Conclusions. HBT may suppress the development of inflammation and ulceration caused by H. pylori VacA, suggesting that HBT may be useful as a new type of therapeutic agent for the prevention of gastric ulcer and inflammation caused by VacA.  相似文献   

18.
The vacuolating cytotoxin VacA of Helicobacter pylori plays an important but yet unknown role in pathogenesis. We studied the impact of the vacuolating cytotoxin on H. pylori invasion of and survival within AGS cells (human gastric cell line derived from an antral adenocarcinoma). Isogenic vacA and cagA mutants were constructed in a wild-type clinical isolate H. pylori, AF4. An H. pylori VacA-deficient mutant, AF4(vacA::kan), was cultured in significantly lower numbers from AGS cells after 24 h incubation with gentamicin added to the culture medium than were the type I wild-type strain AF4 (P<0.03) and an isogenic cagA mutant (P<0.01). Complementation of the AF4 vacA mutant with broth culture supernatant from wild-type AF4 improved the intracellular survival of the vacA mutant. We conclude that H. pylori's vacuolating cytotoxin improves the intracellular survival of H. pylori within AGS cells, suggesting the role of the vacuolating cytotoxin in H. pylori pathogenesis.  相似文献   

19.
《Autophagy》2013,9(1):138-143
Helicobacter pylori is a gram negative pathogen that infects at least half of the world’s population and is associated not only with gastric cancer but also with other diseases such as gastritis and peptic ulcers. Indeed, H. pylori is considered the single most important risk factor for the development of gastric cancer. The vacuolating cytotoxin, VacA, secreted by H. pylori promotes intracellular survival of the bacterium and modulates host immune responses. In a recent study, we reported that VacA induces autophagy. Multilamellar autophagosomes are detected in gastric epithelial cells that are distinct from the large vacuoles formed by VacA. Furthermore, inhibition of autophagy stabilizes VacA and reduces vacuolation in the cells indicating that the toxin is being degraded by autophagy, thus limiting toxin-induced host cell damage. Many of the methods that were used for this study are commonly employed techniques that were adapted for H. pylori infection and VacA intoxication. In this paper, we describe the various methods and specific protocols used for the assessment and monitoring of autophagy during H. pylori infection.  相似文献   

20.
万秀坤  刘纯杰 《微生物学报》2016,56(12):1821-1830
幽门螺杆菌感染是导致从胃炎到胃癌等一系列胃相关疾病的主要病因,但具体的致病机制仍不是很清楚。细胞毒素相关蛋白A(cytotoxin-associated gene A,Cag A)是幽门螺杆菌编码的一种重要毒力因子,且作为细菌来源的唯一癌蛋白被大量研究。Cag A蛋白是由幽门螺杆菌Ⅳ型分泌系统介导并注入宿主胃上皮细胞内,一旦进入细胞,Cag A能够与多个分子发生相互作用,扰乱细胞正常的信号通路,引起细胞病变和转化,而动物实验也证明了Cag A蛋白的致癌特点。本文重点对Cag A蛋白的序列特征,转位方式及致病机制等方面的最新进展进行了综述,希望能进一步阐释Cag A介导的幽门螺杆菌的致病机制,为以后的研究提供一定的方向和指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号