首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LKB1, the tumour suppressor, is found mutated in Peutz-Jeghers syndrome (PJS). The LKB1 is a serine-threonine kinase protein that is allosterically activated by the binding of STRADα and MO25α without phosphorylating the Thr212 present at activation loop. The present study aims to highlight the structural dynamics and complexation mechanism during the allosteric activation of LKB1 by these co-activators using molecular dynamics simulations. The all atom simulations performed on the complexes of LKB1 with ATP, STRADα, and MO25α for a period of 30 ns reveal that binding of STRADα and MO25α significantly stabilizes the highly flexible regions of LKB1 such as ATP binding region (β1-β2 loop), catalytic & activation loop segments and αG helix. Also, binding of STRADα and MO25α to LKB1 promotes coordinated motion between N- and C-lobes along with the catalytic & activation loops by forming H-bonds between LKB1 and co-activators, which further facilitate to establish the conserved attributes of active LKB1 such as (i) formation of salt bridge between Lys78 and Glu98, (ii) formation of stable hydrophobic R- and C-spines, and (iii) interaction between both catalytic and activation loops. Especially, the residues of LKB1 interacting with STRADα (Arg74, Glu342) and MO25α (Glu165, Pro203 and Phe204) are observed to play a significant role in stabilizing the (LKB1-ATP)-(STRADα-ATP)-MO25α complex. Overall, the present work highlighting the structural dynamics of LKB1 by the binding of allosteric co-activators is expected to provide a basic understanding on drug design specific to PJS syndrome.  相似文献   

2.
In liver, the AMP-activated protein kinase kinase (AMPKK) complex was identified as the association of liver kinase B1 (LKB1), mouse protein 25 (MO25α/β), and Ste-20-related adaptor protein (STRADα/β); however, this complex has yet to be characterized in skeletal muscle. We demonstrate the expression of the LKB1-MO25-STRAD complex in skeletal muscle, confirm the absence of mRNA splice variants, and report the relative mRNA expression levels of these proteins in control and muscle-specific LKB1 knockout (LKB1(-/-)) mouse muscle. LKB1 detection in untreated control and LKB1(-/-) muscle lysates revealed two protein bands (50 and 60 kDa), although only the heavier band was diminished in LKB1(-/-) samples [55 ± 2.5 and 13 ± 1.5 arbitrary units (AU) in control and LKB1(-/-), respectively, P < 0.01], suggesting that LKB1 is not represented at 50 kDa, as previously cited. The 60-kDa LKB1 band was further confirmed following purification using polyethylene glycol (43 ± 5 and 8.4 ± 4 AU in control and LKB1(-/-), respectively, P < 0.01) and ion-exchange fast protein liquid chromatography. Mass spectrometry confirmed LKB1 protein detection in the 60-kDa protein band, while none was detected in the 50-kDa band. Coimmunoprecipitation assays demonstrated LKB1-MO25-STRAD complex formation. Quantitative PCR revealed significantly reduced LKB1, MO25α, and STRADβ mRNA in LKB1(-/-) muscle. These findings demonstrate that the LKB1-MO25-STRAD complex is the principal AMPKK in skeletal muscle.  相似文献   

3.
We recently demonstrated that the LKB1 tumour suppressor kinase, in complex with the pseudokinase STRAD and the scaffolding protein MO25, phosphorylates and activates AMP-activated protein kinase (AMPK). A total of 12 human kinases (NUAK1, NUAK2, BRSK1, BRSK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) are related to AMPK. Here we demonstrate that LKB1 can phosphorylate the T-loop of all the members of this subfamily, apart from MELK, increasing their activity >50-fold. LKB1 catalytic activity and the presence of MO25 and STRAD are required for activation. Mutation of the T-loop Thr phosphorylated by LKB1 to Ala prevented activation, while mutation to glutamate produced active forms of many of the AMPK-related kinases. Activities of endogenous NUAK2, QIK, QSK, SIK, MARK1, MARK2/3 and MARK4 were markedly reduced in LKB1-deficient cells. Neither LKB1 activity nor that of AMPK-related kinases was stimulated by phenformin or AICAR, which activate AMPK. Our results show that LKB1 functions as a master upstream protein kinase, regulating AMPK-related kinases as well as AMPK. Between them, these kinases may mediate the physiological effects of LKB1, including its tumour suppressor function.  相似文献   

4.
LKB1, a serine/threonine kinase, regulates cell polarity, metabolism, and cell growth. The activity and cellular distribution of LKB1 are determined by cofactors, STRADalpha and MO25. STRADalpha induces relocalization of LKB1 from the nucleus to the cytoplasm and stimulates its catalytic activity. MO25 stabilizes the STRADalpha/LKB1 interaction. We investigated the mechanism of nucleocytoplasmic transport of LKB1 in response to its cofactors. Although LKB1 is imported into the nucleus by importin-alpha/beta, STRADalpha and MO25 passively diffuse between the nucleus and the cytoplasm. STRADalpha induces nucleocytoplasmic shuttling of LKB1. STRADalpha facilitates nuclear export of LKB1 by serving as an adaptor between LKB1 and exportins CRM1 and exportin7. STRADalpha inhibits import of LKB1 by competing with importin-alpha for binding to LKB1. MO25 stabilizes the LKB1-STRADalpha complex but it does not facilitate its nucleocytoplasmic shuttling. Strikingly, the STRADbeta, isoform which differs from STRADalpha in the N- and C-terminal domains that are responsible for interaction with export receptors, does not efficiently relocalize LKB1 from the nucleus to the cytoplasm. These results identify a multifactored mechanism to control LKB1 localization, and they suggest that the STRADbeta-LKB1 complex might possess unique functions in the nucleus.  相似文献   

5.
Whole exome sequencing of cutaneous melanoma has led to the detection of P29 mutations in RAC1 in 5–9% of samples, but the role of RAC1 P29 mutations in melanoma biology remains unclear. Using reverse phase protein array analysis to examine the changes in protein/phospho‐protein expression, we identified cyclin B1, PD‐L1, Ets‐1, and Syk as being selectively upregulated with RAC1 P29S expression and downregulated with RAC1 P29S depletion. Using the melanoma patient samples in TCGA, we found PD‐L1 expression to be significantly increased in RAC1 P29S patients compared to RAC1 WT as well as other RAC1 mutants. The finding that PD‐L1 is upregulated suggests that oncogenic RAC1 P29S may promote suppression of the antitumor immune response. This is a new insight into the biological function of RAC1 P29S mutations with potential clinical implications as PD‐L1 is a candidate biomarker for increased benefit from treatment with anti‐PD1 or anti‐PD‐L1 antibodies.  相似文献   

6.
LKB1 complexed with MO25 and STRAD has been identified as an AMP-activated protein kinase kinase (AMPKK). We measured relative LKB1 protein abundance and AMPKK activity in liver (LV), heart (HT), soleus (SO), red quadriceps (RQ), and white quadriceps (WQ) from sedentary and endurance-trained rats. We examined trained RQ for altered levels of MO25 protein and LKB1, STRAD, and MO25 mRNA. LKB1 protein levels normalized to HT (1 +/- 0.03) were LV (0.50 +/- 0.03), SO (0.28 +/- 0.02), RQ (0.32 +/- 0.01), and WQ (0.12 +/- 0.03). AMPKK activities in nanomoles per gram per minute were HT (79 +/- 6), LV (220 +/- 9), SO (22 +/- 2), RQ (29 +/- 2), and WQ (42 +/- 4). Training increased LKB1 protein in SO, RQ, and WQ (P < 0.05). LKB1 protein levels after training (%controls) were SO (158 +/- 17), RQ (316 +/- 17), WQ (191 +/- 27), HT (106 +/- 2), and LV (104 +/- 7). MO25 protein after training (%controls) was 595 +/- 71. Training did not affect AMPKK activity. MO25 but not LKB1 or STRAD mRNA increased with training (P < 0.05). Trained values (%controls) were MO25 (164 +/- 22), LKB1 (120 +/- 16), and STRAD (112 +/- 17). LKB1 protein content strongly correlated (r = 0.93) with citrate synthase activity in skeletal muscle (P < 0.05). In conclusion, endurance training markedly increased skeletal muscle LKB1 and MO25 protein without increasing AMPKK activity. LKB1 may be playing multiple roles in skeletal muscle adaptation to endurance training.  相似文献   

7.
Mutations in the LKB1 protein kinase result in the inherited Peutz Jeghers cancer syndrome. LKB1 has been implicated in regulating cell proliferation and polarity although little is known about how this enzyme is regulated. We recently showed that LKB1 is activated through its interaction with STRADalpha, a catalytically deficient pseudokinase. Here we show that endogenous LKB1-STRADalpha complex is associated with a protein of unknown function, termed MO25alpha, through the interaction of MO25alpha with the last three residues of STRADalpha. MO25alpha and STRADalpha anchor LKB1 in the cytoplasm, excluding it from the nucleus. Moreover, MO25alpha enhances the formation of the LKB1-STRADalpha complex in vivo, stimulating the catalytic activity of LKB1 approximately 10-fold. We demonstrate that the related STRADbeta and MO25beta isoforms are also able to stabilize LKB1 in an active complex and that it is possible to isolate complexes of LKB1 bound to STRAD and MO25 isoforms, in which the subunits are present in equimolar amounts. Our results indicate that MO25 may function as a scaffolding component of the LKB1-STRAD complex and plays a crucial role in regulating LKB1 activity and cellular localization.  相似文献   

8.
The crystal structure of the extracellular bacterial serine protease α-lytic protease (αLP) has been solved at 0.83 Å resolution at pH 8. This ultra-high resolution structure allows accurate analysis of structural elements not possible with previous structures. Hydrogen atoms are visible, and confirm active-site hydrogen-bonding interactions expected for the apo enzyme. In particular, His57 Nδ1 participates in a normal hydrogen bond with Asp102 in the catalytic triad, with a hydrogen atom visible 0.83(±0.06) Å from the His Nδ1. The catalytic Ser195 occupies two conformations, one corresponding to a population of His57 that is doubly protonated, the other to the singly protonated His57. Based on the occupancy of these conformations, the pKa of His57 is calculated to be ∼8.8 when a sulfate ion occupies the active site. This 0.83 Å structure has allowed critical analysis of geometric distortions within the structure. Interestingly, Phe228 is significantly distorted from planarity. The distortion of Phe228, buried in the core of the C-terminal domain, occurs at an estimated energetic cost of 4.1 kcal/mol. The conformational space for Phe228 is severely limited by the presence of Trp199, which prevents Phe228 from adopting the rotamer observed in many other chymotrypsin family members. In αLP, the only allowed rotamer leads to the deformation of Phe228 due to steric interactions with Thr181. We hypothesize that tight packing of co-evolved residues in this region, and the subsequent deformation of Phe228, contributes to the high cooperativity and large energetic barriers for folding and unfolding of αLP. The kinetic stability imparted by the large, cooperative unfolding barrier plays a critical role in extending the lifetime of the protease in its harsh environment.  相似文献   

9.
Mouse protein 25 alpha (MO25 alpha) is a 40-kDa protein that, together with the STE20-related adaptor-alpha (STRAD alpha) pseudo kinase, forms a regulatory complex capable of stimulating the activity of the LKB1 tumor suppressor protein kinase. The latter is mutated in the inherited Peutz-Jeghers cancer syndrome (PJS). MO25 alpha binds directly to a conserved Trp-Glu-Phe sequence at the STRAD alpha C terminus, markedly enhancing binding of STRAD alpha to LKB1 and increasing LKB1 catalytic activity. The MO25 alpha crystal structure reveals a helical repeat fold, distantly related to the Armadillo proteins. A complex with the STRAD alpha peptide reveals a hydrophobic pocket that is involved in a unique and specific interaction with the Trp-Glu-Phe motif, further supported by mutagenesis studies. The data represent a first step toward structural analysis of the LKB1-STRAD-MO25 complex, and suggests that MO25 alpha is a scaffold protein to which other regions of STRAD-LKB1, cellular LKB1 substrates or regulatory components could bind.  相似文献   

10.
The tumor suppressor protein kinase LKB1 exerts its effects by phosphorylating and activating AMP-activated protein kinase (AMPK) and members of the AMPK-related kinase family, such as the brain-specific kinases BRSK1/BRSK2 (SAD-B/SAD-A). LKB1 contains a conserved serine residue near the C terminus (Ser-431 in mouse LKB1) that is phosphorylated by cyclic AMP-dependent protein kinase and p90-RSK. Although some studies suggest that LKB1 is constitutively active and is not rate-limiting for activation of AMPK, others have suggested that phosphorylation of Ser-431 is necessary to allow LKB1 to phosphorylate and activate AMPK and other downstream kinases. Prompted by our discovery of an LKB1 splice variant (LKB1S) that lacks Ser-431, we have reinvestigated this question. In HeLa cells (which lack endogenous LKB1), co-expression with STRADalpha and MO25alpha of wild type LKB1, the S431A or S431E mutants of LKB1, or LKB1(S) gave equal levels of activation of endogenous AMPK. Similarly, recombinant STRADalpha.MO25alpha complexes containing these LKB1 variants were equally effective at phosphorylating and activating AMPK, BRSK1, and BRSK2 in cell-free assays. Finally, all four LKB1 variants and a truncated LKB1 lacking the C-terminal region altogether were equally effective at causing cell cycle arrest when co-expressed with STRADalpha and MO25alpha in the G361 melanoma cell line. Our results do not support the idea that phosphorylation of Ser-431 increases the ability of LKB1 to phosphorylate downstream targets.  相似文献   

11.
Human glutathione transferase A1-1 (GST A1-1) has a flexible C-terminal segment that forms a helix (α9) closing the active site upon binding of glutathione and a small electrophilic substrate such as 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of active-site ligands, the C-terminal segment is not fixed in one position and is not detectable in the crystal structure. A key residue in the α9-helix is Phe 220, which can interact with both the enzyme-bound glutathione and the second substrate, and possibly guide the reactants into the transition state. Mutation of Phe 220 into Ala and Thr was shown to reduce the catalytic efficiency of GST A1-1. The mutation of an additional residue, Phe 222, caused further decrease in activity. The presence of a viscosogen in the reaction medium decreased the kinetic parameters kcat and kcat/Km for the conjugation of CDNB catalyzed by wild-type GST A1-1, in agreement with the view that product release is rate limiting for the substrate-saturated enzyme. The mutations cause a decrease of the viscosity dependence of both kinetic parameters, indicating that the motion of the α9-helix is linked to catalysis in wild-type GST A1-1. The isomerization reaction with the alternative substrate Δ5-androstene-3,17-dione (AD) is affected in a similar manner by the viscosogens. The transition state energy of the isomerization reaction, like that of the CDNB conjugation, is lowered by Phe 220 as indicated by the effects of the mutations on kcat/Km. The results demonstrate that Phe 220 and Phe 222, in the dynamic C-terminal segment, influence rate-determining steps in the catalytic mechanism of both the substitution and the isomerization reactions.  相似文献   

12.
Multiple sequence alignments showed that the prolines at the 25th, 129th, 153rd, 242nd, 322nd, and 434th amino acids in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 are strongly conserved in various prokaryotic EPSPS proteins. Single point mutations of the conserved prolines to alanine (P25A, P153A, P242A, P322A, and P434A) were introduced in the CP4 EPSPS in order to investigate the importance of the conserved prolines for the enzyme properties. The point mutations caused decreases in substrate binding affinity and catalytic efficiency as well as the glyphosate resistance, in general. Especially, the 25th and 242nd prolines located in the polypeptide hinges connecting top and bottom domains of CP4 EPSPS as well as the 434th proline at the C-terminus of the enzyme turned out to be crucial for the enzyme activity.  相似文献   

13.
Mouse protein-25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling development and morphogenesis. Our analyses suggest that MO25α and MO25β associate with these STE20 kinases in a similar manner to STRAD. MO25 isoforms induce approximately 100-fold activation of SPAK/OSR1 dramatically enhancing their ability to phosphorylate the ion cotransporters NKCC1, NKCC2 and NCC, leading to the identification of several new phosphorylation sites. siRNA-mediated reduction of expression of MO25 isoforms in mammalian cells inhibited phosphorylation of endogenous NKCC1 at residues phosphorylated by SPAK/OSR1, which is rescued by re-expression of MO25α. MO25α/β binding to MST3/MST4/YSK1 also stimulated kinase activity three- to four-fold. MO25 has evolved as a key regulator of a group of STE20 kinases and may represent an ancestral mechanism of regulating conformation of pseudokinases and activating catalytically competent protein kinases.  相似文献   

14.
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Excess PMP22 mutants accumulate in the endoplasmic reticulum (ER) resulting in the inherited neuropathies of Charcot–Marie–Tooth disease. However, there was no evidence of the structure of PMP22 or how mutations affect its folding. Therefore, in this study, we combined bioinformatics and homology modeling approaches to obtain three-dimensional native and mutated PMP22 models and its anchoring to a POPC membrane, submitted to .5-μs MD simulations, to determine how the L16P and T118M mutations affect the conformational behavior of PMP22. In addition, we investigated the ability of the native and mutated species to accumulate in the ER, via interaction with RER1, by combining protein–protein docking and MD simulations, taking the conformations that were most representative of the native and mutated PMP22 systems and RER1 conformations. Principal component analysis over MD simulations revealed that L16P and T118M mutations resulted in increased structural instability compared to the native form, which is consistent with previous experimental findings of increased structural fluctuations along a loop connecting transmembrane α-helix1 and α-helix2. Docking and MD simulations coupled with the MMGBSA approach allowed the identification that the binding interface for the PMP22-RER1 complex takes place through transmembrane α-helix1 and α-helix2, with higher effective binding free energy values between the mutated PMP22 systems and RER1 than for the native PMP22, mainly through van der Waals interactions.  相似文献   

15.
Germline mutations of the serine/threonine kinase LKB1 (also known as STK11) lead to Peutz–Jeghers syndrome (PJS) that is associated with increased incidence of malignant cancers. However, the tumor suppressor function of LKB1 has not been fully elucidated. We applied yeast two-hybrid screening and identified that a novel WD-repeat protein WDR6 was able to interact with LKB1. Immunofluorescence staining revealed that WDR6 was localized in cytoplasm, similar to the localization of LKB1. Expression of LKB1 was able to inhibit colony formation of Hela cells. Interestingly, coexpression of WDR6 with LKB1 enhanced the inhibitory effect of LKB1 on Hela cell proliferation. Consistently, WDR6 was able to synergize with LKB1 in cell cycle G1 arrest in Hela cells. Coexpression of WDR6 and LKB1 was able to induce a cyclin-dependent kinase (CDK) inhibitor p27Kip1. Furthermore, the stimulatory effect of LKB1 on p27Kip1 promoter activity was significantly elevated by coexpression with WDR6. Collectively, these results provided initial evidence that WDR6 is implicated in the cell growth inhibitory pathway of LKB1 via regulation of p27Kip1.  相似文献   

16.
The molecular and crystal structures of one derivative and three homopeptides (from the di-to the tetrapeptide level) of the chiral, Cα, α-disubstituted glycine Cα-methyl, Cα-benzylglycine [(αMe)Phe], have been determined by x-ray diffraction. The derivative is mClAc-D -(αMe)Phe-OH, and the peptides are pBrBz-[D -(αMe)Phe]2-NHMe, pBrBz-[D -(αMe)Phe]3-OH hemihydrate, and pBrBz-[D -(αMe)Phe]4-OtBu sesquihydrate. All (αMe)Phe residues prefer ?,ψ torsion angles in the helical region of the conformational map. The dipeptide methylamide and the tripeptide carboxylic acid adopt a β-turn conformation with a 1 ← 4 C?O…?H? N intramolecular H bond. The structure of the tripeptide carboxylic acid is further stabilized by a 1 ← 4 C?O…?H? O intramolecular H bond, forming an “oxy-analogue” of a β-turn. The tetrapeptide ester is folded in a regular (incipient) 310-helix. In general, the relationship between (αMe)Phe chirality and helix screw sense is opposite to that exhibited by protein amino acids. A comparison is made with the conclusions extracted from published work on homopeptides from other Cα-methylated α-amino acids. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADα in complex with MO25α. The structure reveals an intricate web of interactions between STRADα and MO25α involving the αC-helix of STRADα, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADα binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADα for MO25α, and conversely, binding of MO25α promotes interaction of STRADα with ATP. Mutagenesis studies reveal that association of STRADα with either ATP or MO25α is essential for LKB1 activation. We conclude that ATP and MO25α cooperate to maintain STRADα in an “active” closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADα that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADα and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADα to activate LKB1 is dependent on a closed “active” conformation, aided by ATP and MO25α binding. Thus, the function of STRADα is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.  相似文献   

18.
The tumour suppressor LKB1 plays a critical role in cell proliferation, polarity and energy metabolism. LKB1 is a Ser/Thr protein kinase that is associated with STRAD and MO25 in vivo. Here, we describe the individual expression of the three components of the LKB1 complex using monocistronic vectors and their co-expression using tricistronic vectors that were constructed from monocistronic vectors using a fully modular cloning approach. The data show that among the three individually expressed components of the LKB1 complex, only MO25α can be expressed in soluble form, whereas the other two, LKB1 and STRADα are found almost exclusively in inclusion bodies. However, using the tricistronic vector system, functional LKB1-MO25α-STRADα complex was expressed and purified from soluble extracts by sequential immobilized-metal affinity and heparin chromatography, as shown by Western blotting using specific antibodies. In size exclusion chromatography, MO25α and STRADα exactly co-elute with LKB1 with an apparent molecular weight of the heterotrimeric complex of 160 kDa. The specific activity in the peak fraction of the size exclusion chromatography was 250 U/mg at approximately 25% purity. As shown by autoradiography, LKB1 and STRADα, both strongly autophosphorylate in vitro. Moreover, recombinant LKB1 complex activates AMPK by phosphorylation of the α-subunit at the Thr-172 site as shown (i) by Western blotting using phospho-specific antibodies after LKB1-dependent phosphorylation, (ii) by LKB1-dependent incorporation of radioactive phosphate into the α-subunit of kinase dead AMPK heterotrimer, and (iii) by activity determination of AMPK. Functional mammalian LKB1 complex is constitutively active, and when enriched from bacteria should prove to be a valuable tool for studying its molecular function and regulation.  相似文献   

19.
Human cytochrome P450 (P450) 3A4 is involved in the metabolism of one-half of marketed drugs and shows cooperative interactions with some substrates and other ligands. The interaction between P450 3A4 and the known allosteric effector 7,8-benzoflavone (α-naphthoflavone, αNF) was characterized using steady-state fluorescence spectroscopy. The binding interaction of P450 3A4 and αNF effectively quenched the fluorescence of both the enzyme and ligand. The Hill Equation and Stern–Volmer fluorescence quenching models were used to evaluate binding of ligand to enzyme. P450 3A4 fluorescence was quenched by titration with αNF; at the relatively higher [αNF]/[P450 3A4] ratios in this experiment, two weaker quenching interactions were revealed (Kd 1.8–2.5 and 6.5 μM). A range is given for the stronger interaction since αNF quenching of P450 3A4 fluorescence changed the protein spectral profile: quenching of 315 nm emission was slightly more efficient (Kd 1.8 μM) than the quenching of protein fluorescence at 335 and 355 nm (Kd 2.5 and 2.1 μM, respectively). In the reverse titration, αNF fluorescence was quenched by P450 3A4; at the lower [αNF]/[P450 3A4] ratios here, two strong quenching interactions were revealed (Kd 0.048 and 1.0 μM). Thus, four binding interactions of αNF to P450 3A4 are suggested by this study, one of which may be newly recognized and which could affect studies of drug oxidations by this important enzyme.  相似文献   

20.
LKB1 is an upstream activating kinase for the AMP-activated protein kinase (AMPK) and at least 12 other AMPK-related kinases. LKB1 therefore acts as a master kinase regulating the activity of a wide range of downstream kinases, which themselves have diverse physiological roles. Here we identify a second form of LKB1 generated by alternative splicing of the LKB1 gene. The two LKB1 proteins have different C-terminal sequences generating a 50-kDa form (termed LKB1L) and a 48-kDa form (LKB1S). LKB1L is widely expressed in mouse tissues, whereas LKB1S has a restricted tissue distribution with predominant expression in the testis. LKB1S, like LKB1L, forms a complex with MO25 and STRAD, and phosphorylates and activates AMPK both in vitro and in intact cells. A phosphorylation site (serine 431 in mouse) and a farnesylation site (cysteine 433 in mouse) within LKB1L are not conserved in LKB1S raising the possibility that these sites might be involved in differential regulation and/or localization of the two forms of LKB1. However, we show that phosphorylation of serine 431 has no effect on LKB1L activity and that both LKB1L and LKB1S have similar patterns of subcellular localization. These results indicate that the physiological significance of the different forms of LKB1 is not related directly to differences in the C-terminal sequences but may be due to their differential patterns of tissue distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号