首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hair follicle (HF) represents a prototypic ectodermal–mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem‐cell‐rich mini‐organs is that they undergo life‐long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy‐efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro‐environment (including its stem cell niche) as well as in their external tissue macro‐environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub‐stages: early ‘refractory’ and late ‘competent’ telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response‐signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro‐regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active ‘regenerative mode’ of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.  相似文献   

2.
In search of the "hair cycle clock": a guided tour   总被引:15,自引:0,他引:15  
The hair follicle, a unique characteristic of mammals, represents a stem cell-rich, prototypic neuroectodermal-mesodermal interaction system. This factory for pigmented epithelial fibers is unique in that it is the only organ in the mammalian body which, for its entire lifetime, undergoes cyclic transformations from stages of rapid growth (anagen) to apoptosis-driven regression (catagen) and back to anagen, via an interspersed period of relative quiescence (telogen). While it is undisputed that the biological "clock" that drives hair follicle cycling resides in the hair follicle itself, the molecular nature of the underlying oscillator system remains to be clarified. To meet this challenge is of profound general interest, since numerous key problems of modern biology can be studied exemplarily in this versatile model system. It is also clinically important, since the vast majority of patients with hair growth disorders suffers from an undesired alteration of hair follicle cycling. Here, we sketch basic background information and key concepts that one needs to keep in mind when exploring the enigmatic "hair cycle clock"(HCC), and summarize competing models of the HCC. We invite the reader on a very subjective guided tour, which focuses on our own trials, errors, and findings toward the distant goal of unravelling one of the most fascinating mysteries of biology: Why does the hair follicle cycle at all? How does it do it? What are the key players in the underlying molecular controls? Attempting to offer at least some meaningful answers, we share our prejudices and perspectives, and define crucial open questions.  相似文献   

3.
Summary Inasmuch as hair follicles are difficult to maintain in culture, the study of hair biology using cultured hair follicles has met with only limited success. In our attempts to solve the problem of follicle degeneration, we cultured follicles at the air-surface interface on a modified collagen matrix (Gelfoam). In follicles cultured at the air-surface or submerged, we examined follicular morphology, hair shaft growth, sulfotransferase levels, cysteine incorporation, an expression of a tissue inhibitor of metalloproteinase (TIMP), and ultra-high sulfur keratin (UHSK). Follicles cultured at the air-liquid interface produced a 2.7-fold increase in hair growth and maintained an anagen-like morphology. Substrates such as nylon mesh seeded with fibroblasts, Full Thickness Skin?, or 5-μm polycarbonate filter also supported hair growth, whereas Gelfilm, GF-A glass filter, filter paper, or 1-μm polycarbonate filter did not. The UHSK expression was significantly higher in the air-liquid interface cultures compared to the submerged culture. Several potassium channel openers, including minoxidil, a minoxidil analog, and the pinacidil analog (P-1075), all stimulated significant cysteine incorporation in follicles. Minoxidil and its analog specifically preserved the follicular root sheath, in contrast to P-1075 which did not, indicating a difference in the two drug types. The preservation of the root sheath was measured by increased TIMP expression and sulfotransferase activity and indicates that the root sheath is a target tissue for minoxidil. Our results show that follicles cultured at the air-liquid interface maintain a better morphology and produced greater hair growth than follicles cultured on tissue culture plastic.  相似文献   

4.
Hair follicles are simple, accessible models for many developmental processes. Here, using mutant mice, we show that Bmpr2, a known receptor for bone morphogenetic proteins (Bmps), and Acvr2a, a known receptor for Bmps and activins, are individually redundant but together essential for multiple follicular traits. When Bmpr2/Acvr2a function is reduced in cutaneous epithelium, hair follicles undergo rapid cycles of hair generation and loss. Alopecia results from a failure to terminate hair development properly, as hair clubs never form, and follicular retraction is slowed. Hair regeneration is rapid due to premature activation of new hair‐production programs. Hair shafts differentiate aberrantly due to impaired arrest of medullary‐cell proliferation. When Bmpr2/Acvr2a function is reduced in melanocytes, gray hair develops, as melanosomes differentiate but fail to grow, resulting in organelle miniaturization. We conclude that Bmpr2 and Acvr2a normally play cell‐type‐specific, necessary roles in organelle biogenesis and the shutdown of developmental programs and cell division. genesis 1–18, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Tip growth of plant cells has been suggested to be regulated by a tip-focused gradient in cytosolic calcium concentration ([Ca2+]c). However, whether this gradient orients apical growth or follows the driving force for this process remains unknown. Using localized photoactivation of the caged calcium ionophore Br-A23187 we have been able to artificially generate an asymmetrical calcium influx across the root hair tip. This led to a change in the direction of tip growth towards the high point of the new [Ca2+]c gradient. Such reorientation of growth was transient and there was a return to the original direction within 15 min. Root hairs forced to change the direction of their growth by placing a mechanical obstacle in their path stopped, reoriented growth to the side, and grew past the mechanical blockage. However, as soon as the growing tip had cleared the obstacle, growth returned to the original direction. Confocal ratio imaging revealed that a tip-focused [Ca2+]c gradient was always centered at the site of active growth. When the root hair changed direction the gradient also reoriented, and when growth returned to the original direction, so did the [Ca2+]c gradient. This normal direction of apical growth of Arabidopsis thaliana (L.) Heynh. root hairs was found to be at a fixed angle from the root of 85 ± 6.7 degrees. In contrast, Tradescantia virginiana (L.) pollen tubes that were induced to reorient by touch or localized activation of the caged ionophore, did not return to the original growth direction, but continued to elongate in their new orientation. These results suggest that the tip-focused [Ca2+]c gradient is an important factor in localizing growth of the elongating root hair and pollen tube to the apex. However, it is not the primary determinant of the direction of elongation in root hairs, suggesting that other information from the root is acting to continuously reset the growth direction away from the root surface. Received: 22 April 1997 / Accepted: 14 May 1997  相似文献   

6.
7.
Abstract Among sulfur compounds, thiosulfate and polythionates are present at least transiently in many environments. These compounds have a similar chemical structure and their metabolism appears closely related. They are commonly used as energy sources for photoautotrophic or chemolithotrophic microorganisms, but their assimilation has been seldom studied and their importance in bacterial physiology is not well understood. Almost all bacterial strains are able to cleave these compounds since they possess thiosulfate sulfur transferase, thiosulfate reductace or S -sulfocysteine synthase activities. However, the role of these enzymes in the assimilation of thiosulfate or polythionates has not always been clearly established.
Elemental sulfur is, on the contrary, very common in the environmental. It is an energy source for sulfur-reducing eubacteria and archaebacteria and many sulfur-oxidizing archaebacteria. A phenomenon still not well understood is the 'excessive assimilatory sulfur metabolism' as observed in methanogens which perform a sulfur reduction which exceeds their anabolic needs without any apparent benefit. In heterotrophs, assimilation of elemental sulfur is seldom described and it is uncertain whether this process actually has a physiological significance.
Thus, reduction of thiosulfate and elemental sulfur is a common by incompletely understood feature among bacteria. These activities could give bacteria a selective advantage, but futher investigations are needed to clarify this possibility. Presence of thiosulfate, polythionates and sulfur reductase activities does not imply obligatorily that these activities play a role in thiosulfate, polythionates or sulfur assimilation as these compounds could be merely intermediates in bacterial metabolism. The possibility also exists that the assimilation of these sulfur compounds is just a side effect of an enzymatic activity with a completely different function.  相似文献   

8.
9.
The ability to establish cell polarity is crucial to form and function of an individual cell. Polarity underlies critical processes during cell development, such as cell growth, cell division, cell differentiation and cell signalling. Interphase cytoplasmic microtubules in tip-growing fission yeast cells have been shown to play a particularly important role in regulating cell polarity. By placing proteins that serve as spatial cues in the cell cortex of the expanding tip, microtubules determine the site where exocytosis, and therefore growth, takes place. Transport and the targeting of exocytotic vesicles to the very tip depend on the actin cytoskeleton. Recently, endoplasmic microtubules have been identified in tip-growing root hairs, which are an experimental system for plant cell growth. Here, we review the data that demonstrate involvement of microtubules in hair elongation and polarity of the model plants Medicago truncatula and Arabidopsis thaliana. Differences and similarities between the microtubule organization and function in these two species are discussed and we compare the observations in root hairs with the microtubule-based polarity mechanism in fission yeast.  相似文献   

10.
血管内皮生长因子(vascular endothelial growth factor, VEGF)是一种二聚体糖蛋白,能够诱导毛囊血管内皮细胞的增殖和迁移,调节毛囊周围毛细血管生成,进而影响毛囊的生长发育。已知cgVEGF164是绒山羊VEGF-A基因的一种主要剪接变体,但cgVEGF164基因是否具有调控毛囊生长发育的作用目前尚不清楚。为初步探究cgVEGF164基因对毛囊生长的影响及其机制,本研究通过原核显微注射制备cgVEGF164转基因过量表达小鼠。通过HE染色法比较转基因小鼠和非转基因对照小鼠毛囊的直径和密度,利用WesternBlot检测小鼠背部皮肤中信号蛋白ERK1/2、AKT1、LEF1的磷酸化水平。本研究成功获得5只阳性cg VEGF164转基因小鼠(雌雄比为4:1,阳性率8.5%);与非转基因对照小鼠相比,转基因小鼠毛囊直径增大、密度增加;经检测转基因小鼠中ERK1/2、AKT1、LEF1的磷酸化水平均上调。结果表明,cgVEGF164基因具有促进小鼠毛囊生长的作用,推测该功能可能与cgVEGF164影响ERK1/2、AKT1和LEF1等信号蛋白的磷酸化有关。  相似文献   

11.
This study identified the role of CO in regulating the tomato root hair development. Exogenous CO promoted the root hair density and elongation in a concentration-dependent manner. Analysis of cross sections of primary roots also indicated that CO induced the formation of root hairs. Genetic analysis reveals that tomato mutant yg-2 (defective in haem oxygenase-1 activity and intracellular CO generation) displayed a phenotype of delayed root hair development, which however could be reversed by exogenous CO. Further, we analysed LeExt1 :: β -glucuronidase reporter gene for root hair formation and found increasing expression of LeExt1 in the CO-exposed root hairs. Finally, CO was able to act synergistically with auxin, ethylene and NO. It is shown that the effect of CO could be blocked by NPA (auxin transport inhibitor), AVG (ethylene biosynthesis inhibitor), Ag+ (ethylene action inhibitor) or cPTIO (NO scavenger). Exposure of tomato roots to CO also enhanced intracellular NO and reactive oxygen species generation in root hairs. Our results suggest that CO would be required for root hair development and may play a critical role in controlling architectural development of plant roots by a putative mechanism of cross-talk with auxin, ethylene and nitric oxide.  相似文献   

12.
Cochlear hair cells of the inner ear are mechanosensory transducers critical for sound reception in mammals. A mouse with a specific expression of Cre recombinase activity in hair cells is essential for hair cell-specific gene targeting. Here we report a transgenic mouse in which Cre activity is detected in inner hair cells, not in supporting cells, in the cochlea. The Cre activity was visualized with both X-gal staining and beta-galactosidase immunostaining in progeny of a cross between our Cre line and the reporter ROSA26R line. In inner hair cells, the Cre activity started at postnatal day 14 and was maintained throughout adulthood. Starting at postnatal day 50, a few outer hair cells in the outermost row of cochlear apical and middle turns displayed the Cre activity. In vestibular hair cells and spiral ganglia, the Cre activity was also detected. Cre activity was present in cells widely distributed throughout brain, testis, and retina, but was absent in many other tissues such as kidney, heart, liver, and intestine. This Cre mouse line can thus be used for conditional gene targeting in mature inner hair cells of the cochlea. genesis 39:173-177, 2004. Copyright 2004 Wiley-Liss, Inc.  相似文献   

13.
In Arabidopsis, phosphate starvation (-Pi)-induced responses of primary root and lateral root growth are documented to be correlated with ambient iron (Fe) status. However, whether and how Fe participates in -Pi-induced root hair growth (RHG) remains unclear. Here, responses of RHG to different Fe concentrations under Pi sufficiency/deficiency were verified. Generally, distinct dosage effects of Fe on RHG appeared at both Pi levels, due to the generation of reactive oxygen species. Following analyses using auxin mutants and the phr1 mutant revealed that auxin and the central regulator PHR1 are required for Fe-triggered RHG under −Pi. A further proteomic study indicated that processes of vesicle trafficking and auxin synthesis and transport were affected by Fe under −Pi, which were subsequently validated by using a vesicle trafficking inhibitor, brefeldin A, and an auxin reporter, R2D2. Moreover, vesicle trafficking-mediated recycling of PIN2, an auxin efflux transporter, was notably affected by Fe under -Pi. Correspondingly, root hairs of pin2 mutant displayed attenuated responses to Fe under -Pi. Together, we propose that Fe affects auxin signalling probably by modulating vesicle trafficking, chiefly the PIN2 recycling, which might work jointly with PHR1 on modulating -Pi-induced RHG.  相似文献   

14.
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11CA‐induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11CA plants, induced the development of longer root hairs in wild‐type plants and suppressed the effect of Atrop11CA expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11CA‐induced swelling. Fluorescence ratio imaging experiments revealed that in wild‐type root hairs, the addition of NH4NO3 to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen‐dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.  相似文献   

15.
Outer hair cells (OHCs) in the cochlea are crucial for the remarkable hearing sensitivity and frequency tuning. To understand OHC physiology and pathology, it is imperative to use mouse genetic tools to manipulate gene expression specifically in OHCs. Here, we generated two prestin knockin mouse lines: (1) the prestin-CreERT2 line, with an internal ribosome entry site-CreERT2-FRT-Neo-FRT cassette inserted into the prestin locus after the stop codon, and (2) the prestin-CreERT2-NN line, with the FRT-Neo-FRT removed subsequently. We characterized the inducible Cre activity of both lines by crossing them with the reporter lines CAG-eGFP and Ai6. Cre activity was induced with tamoxifen at various postnatal ages and only detected in OHCs, resembling the endogenous prestin expression pattern. Moreover, prestin-CreERT2+/-(heterozygotes) and +/+(homozygotes) as well as prestin-CreERT2-NN+/-mice displayed normal hearing. These two prestin-CreERT2 mouse lines are therefore useful tools to analyze gene function in OHCs in vivo.  相似文献   

16.
Invasive aspergillosis increases in chronic immunosuppressive diseases such as cancer. There is little information about the mechanisms by which Aspergillus infection affects the immune regulation and microenvironment of cancer cells. Hence, this study was aimed at investigating the effect of invasive aspergillosis on immunosurveillance, metastasis, and prognosis of cancer in tumor-bearing mice. After implantation of mouse mammary tumor in BALB/c mice, they were infected with Aspergillus conidia intravenously. For comparison, groups of mice were experimentally infected with Aspergillus conidia or implanted with tumor cells separately. Seven days after Aspergillus infection, the serum levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) were measured by ELISA, and subsequently regulatory T lymphocytes were analyzed by flow cytometry. The survival of animals and mean tumor size were then determined. Our results indicated that tumor sizes in mice increased significantly after infection with Aspergillus conidia. Moreover, invasive aspergillosis enhanced the population of regulatory lymphocytes and level of TIMP-1. This study supports the idea that massive Aspergillus infection could stimulate tumor growth and increases the possibility of a bad prognosis. As a result, treatment of Aspergillus infection could be considered an important issue for efficient cancer therapy.  相似文献   

17.
Gray hair is a visible sign of tissue degeneration during aging. Graying is attributed to dysfunction of melanocyte stem cells (McSCs) that results in depletion of their melanin‐producing progeny. This non‐lethal phenotype makes the hair follicle and its pigment system an attractive model for investigating mechanisms that contribute to tissue aging and therapeutic strategies to combat this process. One potential combination therapeutic is RT1640, which is comprised of two drugs that are known to stimulate hair growth (cyclosporine A [CsA] and minoxidil), along with RT175, a non‐immunosuppressive immunophilin ligand that is implicated in tissue regeneration. Using the ionizing radiation‐induced acute mouse model of hair graying, we demonstrate that RT1640, over CsA alone, promotes regeneration of the hair pigment system during and following treatment. In non‐irradiated mice, RT1640 is also physiologically active and successfully speeds hair growth and expands the McSC pool. It appears that this effect relies on the combined activities of the three drugs within RT1640 to simultaneously activate hair growth and McSCs as RT175 alone was insufficient to induce hair cycling in vivo, yet sufficient to drive the upregulation of the melanogenic program in vitro. This study sets the stage for further investigation into RT1640 and its components in McSC biology and, ultimately, melanocyte hypopigmentary disorders associated with disease and aging.  相似文献   

18.
水培条件下营养元素对枳幼苗根毛发育及根生长的影响   总被引:1,自引:0,他引:1  
以柑橘砧木枳实生苗为试材,研究水培条件下N、P、K、Ca、Mg、Fe和Mn等7种营养元素分别缺乏对其根系主根长度、侧根数和主、侧根根毛密度、根毛长度及根毛直径等的影响.结果表明:水培条件下,不同缺素处理枳实生幼苗的根毛均能生长,但根毛主要集中在近根基段,根尖处分布较少;侧根的根毛密度显著大于主根,而其根毛长度显著小于主根.不同缺素处理对根毛的生长发育影响较大,主根根毛密度为55.0~174.3条·mm-2.与对照相比,缺Ca诱发主根的根毛密度、长度显著增加;缺P使主根的根基段、中段及侧根的根毛密度、长度显著增加;缺Fe使主根根尖段根毛密度显著增加,而长度显著降低;缺K使主根、侧根的根毛密度、长度及根毛直径均显著降低;缺Mg使主根根毛长度显著增加.各处理主根的生长较一致;侧根除缺N、Mg处理外,其他处理均出现脱落后再生的现象.  相似文献   

19.
20.
An intriguing question in developmental biology is how epidermal pattern formation processes are established and what are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the “mini organs” that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development as well as the influence of the body axes on hair patterning. Birth Defects Research (Part C) 87:263–272, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号