首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lam PM  Levy JC 《Biopolymers》2005,79(6):287-291
We have studied theoretically the unzipping of a double-stranded DNA from a condensed globule state by an external force. At constant force, we found that the double-stranded DNA unzips an at critical force Fc and the number of unzipped monomers M goes as M approximately (Fc - F)-3, for both the homogeneous and heterogeneous double-stranded DNA sequence. This is different from the case of unzipping from an extended coil state in which the number of unzipped monomers M goes as M approximately (Fc - F)-chi, where the exponent chi is either 1 or 2 depending on whether the double-stranded DNA sequence is homogeneous or heterogeneous, respectively. In the case of unzipping at constant extension, we found that for a double-stranded DNA with a very large number N of base pairs, the force remains almost constant as a function of the extension, before the unraveling transition, at which the force drops abruptly to zero. Right at the unraveling transition, the number of base pairs remaining in the condensed globule state is still very large and goes as N(3/4), in agreement with theoretical predictions of the unraveling transition of polymers stretched by an external force.  相似文献   

2.
The protonation of the spermine containing calf thymus DNA (molecular mass 15 and 5 MDa) solutions has been studied by means of circular dichroism method. It has been shown that the acid-induced transition from the low-protonated B(+)-form to the double-stranded structure with presumably Hoogsteen complementation of syn-G.C-base-pairs (S-form) in case of high-molecular partially condensed DNA is accompanied by differential scattering of circularly polarized light (DSCPL). The comparative study of protonation of partially and completely condensed low-molecular DNA enabled to obtain a family of DSCPL spectra. It has been demonstrated that the B+----S-transition in partially condensed high-molecular DNA is associated with formation of large intermolecular aggregates (with dimensions about 200 divided by 400 nm) which are destructed by acid-induced DNA denaturation.  相似文献   

3.
Teif  V. B.  Lando  D. Yu. 《Molecular Biology》2001,35(1):106-107
A method for calculating the curves of DNA transition from linear to condensed state upon binding of condensing ligands has been developed. The character of the transition and ligand concentration necessary for condensation have been shown to be governed by the length of DNA molecule, energy and stoichiometry parameters of the DNA–ligand complex (equilibrium constant between linear and condensed form in the absence of ligands, constants for ligand binding to linear and condensed forms, the number of base pairs covered by one ligand, etc.). The results of the calculations indicate that a slight difference in the free energies of these DNA states (less than 6 cal/mol(bp) for a DNA of 500 bp) is sufficient for the existence of a stable linear state in the absence of ligands (in free DNA) and the formation of stable condensed state upon complexation.  相似文献   

4.
Jiang W  Zhang B  Yin J  Liu L  Wang L  Liu C 《Biopolymers》2008,89(12):1154-1169
Proteinaceous aggregates rich in copper, zinc superoxide dismutase (SOD1) have been found in both in vivo and in vitro models. We have shown that double-stranded DNA that acts as a template accelerates the in vitro formation of wild-type SOD1 aggregates. Here, we examined the polymorphism of templated-SOD1 aggregates generated in vitro upon association with DNA under different conditions. Electron microscopy imaging indicates that this polymorphism is capable of being manipulated by the shapes, structures, and doses of the DNAs tested. The nanometer- and micrometer-scale aggregates formed under acidic conditions and under neutral conditions containing ascorbate fall into three classes: aggregate monomers, oligomeric aggregates, and macroaggregates. The aggregate monomers observed at given DNA doses exhibit a polymorphism that is markedly corresponded to the coiled shapes of linear DNA and structures of plasmid DNA. On the other hand, the regularly branched structures observed under both atomic force microscopy and optical microscope indicate that the DNAs tested are simultaneously condensed into a nanoparticle with a specific morphology during SOD1 aggregation, revealing that SOD1 aggregation and DNA condensation are two concurrent phenomena. The results might provide the basis of therapeutic approaches to suppress the formation of toxic protein oligomers or aggregates by screening the toxicity of the protein aggregates with various sizes and morphologies.  相似文献   

5.
6.
It was shown in the past that in the presence of histone H1, plasmidic polynucleosomes formed densely packed aggregates. Our current studies demonstrate that these aggregates are susceptible to the actions of E. coli topoisomerase I, human topoisomerase I and DNA nicking enzyme, which is the indication that negative supercoiling is present in the condensed DNA-protein complexes. Since negative supercoiling leads to formation of highly curved and compact plectonemic and toroidal DNA structures, it would be reasonable to assume that DNA negative supercoils are responsible for aggregation of histone H1-plasmidic polynucleosome complexes.  相似文献   

7.
Linear double-stranded DNA molecules interact with positively charged polyconidine molecules in aqueous salt solutions to yield liquid-crystalline dispersions (LCDs) with a mean particle diameter of ~6000 Å. The packing density of (DNA-polycation) complexes differs among LCD particles formed at different ionic strengths. X-ray data on the liquid-crystalline phases of (DNA-polyconidine) complexes formed under different conditions were compared with a phase diagram, reflecting polymorphism of liquid crystals of linear double-stranded DNA. It was shown that LCD was hexagonal at 0.15 M ≤ C NaCl < 0.4 M and cholesteric at 0.4 M ≤ C NaCl < 0.55 M. Cholesteric LCD displayed abnormal optical activity in the circular dichroism spectrum. A similar situation was observed with poly(2,5-ionene), another polycation differing in chemical structure from polyconidine. The results demonstrated structural polymorphism of (DNA-polycation) LCDs. It was assumed that the packing mode of (DNA-polycation) complexes in LCD particles can be regulated by changing NaCl concentration. The mechanism generating the cholesteric liquid-crystalline state of DNA in a narrow range of NaCl concentrations is discussed.  相似文献   

8.
A two-dimensional anharmonic model, the so-called Toda-Lennard-Jones model, is considered in order to investigate the problems related to the lifetime of the open states precursors to full denaturation, in inhomogeneous ring-shaped DNA molecules. It is found that a transition from double-stranded to single-stranded DNA occurs locally around physiological temperature. Moreover, the presence of inhomogeneities enhances the hydrogen bond breaking.  相似文献   

9.
极端嗜热古菌———芝田硫化叶菌(Sulfolobus shibatae)基因组含一对亲缘关系较远的同源基因,ssh10b和ssh10b2。这对同源基因编码的蛋白(Ssh10b和Ssh10b2)属于古菌Sac10b DNA结合蛋白家族。关于Ssh10b以及与其极为相似的硫矿硫化叶菌(S.solfataricus)Sso10b、嗜酸热硫化叶菌(S.acidocaldarius)Sac10b蛋白已有较多研究,推测这些蛋白可能在染色体组织和包装、DNA重组、基因表达调控等方面起作用。克隆并在大肠杆菌中表达了ssh10b2基因,纯化了重组Ssh10b2蛋白。免疫印迹定量分析表明,ssh10b2在芝田硫化叶菌中有表达,但其细胞含量仅相当于Ssh10b的约十分之一。重组Ssh10b2对双链DNA的亲和力低于Ssh10b。此外,Ssh10b2和Ssh10b在与双链DNA结合时表现出相似的凝胶阻滞模式。有意思的是,Ssh10b2固定DNA负超螺旋的能力明显低于Ssh10b。这些结果提示,Ssh10b和Ssh10b2可能具有不同的生理作用。  相似文献   

10.
With biologically active DNA of the bacteriophage phi X174, both single and double-stranded, some physico-chemical and biological parameters of the depurination reaction are studied. It is shown that in single-stranded DNA each apurinic site is lethal, while in double-stranded RFI-DNA only about 5% of these sites are lethal. Furthermore it is concluded that the apurinic sites are formed at different rates in single- and double-stranded DNA and also the conversion into breaks of the apurinic sites is different for both forms of DNA.  相似文献   

11.
Capillary electrophoresis (CE) is a convenient, fast and non-radioactive method with possibilities for automatization. To analyse single-stranded DNA molecules in a more automated way, we developed a heating device to melt double-stranded DNA fragments in the capillary during electrophoresis. In this study we used this device to obtain single-stranded DNA, necessary for the detection of point mutations in DNA using the single-strand conformation polymorphism technique. Results show that double-stranded DNA molecules can be melted on-line into single-stranded DNA molecules, although not for 100%. In an attempt to find universal electrophoretic conditions for the analysis of single-stranded DNA, we investigated the influence of several parameters on the yield of single-stranded DNA molecules and on the resolution of the single-stranded DNA peaks. We demonstrate that this heating device is a technical adjustment of CE which contributes to more automated analyses of DNA fragments.  相似文献   

12.
During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed.  相似文献   

13.
The effect of physiological concentrations of KCl and MgCl2 on the chemical stability of double-stranded and single-stranded DNA has been studied at temperatures typical for hyperthermophiles. These two salts protect both double and single-stranded DNA against heat-induced cleavage by inhibiting depurination. High KCl concentrations also protect DNA cleavage at apurinic sites, while high MgCl2 concentrations stimulate this cleavage. It has been previously proposed that salt protects double-stranded DNA against depurination by stabilizing the double helix. However, the inhibition of the depurination of single-stranded DNA by KCl and MgCl2 indicates that this effect is more probably due to a direct interaction of salts with purine nucleotides. These results suggest that the number and nature of heat-induced DNA lesions which have to be repaired might be quite different from one hyperthermophile to another, depending on their intracellular salt concentration. High salt concentrations might be also useful to protect DNA in long polymerase chain reaction (PCR) experiments and for long-term preservation. Received: October 12, 1997 / Accepted: January 29, 1998  相似文献   

14.
Guanine oxidation by electron transfer results in the formation of a guanine radical cation, which is at the origin of long-range charge transport through double-stranded DNA. It is possible to observe guanine lesions at a long distance from the oxidative reagent covalently bound to DNA owing to the migration of the positive hole in the DNA pi-stacks. This phenomenon of long-range hole transport is classically studied in the literature with photosensitizers used as one-electron oxidants. It is shown in the present work that the process of long-range charge transport and the concomitant formation of guanine lesions at a long distance can be observed also in the case of two-electron oxidants. This is the signature of the formation of a transient guanine radical cation in the course of the two-electron abstraction process and consequently evidence of the separated one plus one electron abstraction steps. Long-range charge transport is likely to be a universal mechanism for any two-electron oxidant acting by electron abstraction provided that the second electron abstraction is slower than hole transfer.  相似文献   

15.
Detergent-disrupted virions of Moloney murine leukemia virus synthesize a 9 kbp double-stranded infectious DNA. It contains mainly full-length, single-stranded DNA, and its infectivity and size are insensitive to digestion by the single-strand-specific S1 nuclease. Analysis of fragmentation of the DNA using restriction endonucleases has shown that it is indistinguishable from the linear double-stranded DNA synthesized in infected cells. On the basis of the positions of the cleavage sites for a number of enzymes, the 9 kbp DNA has a 575 base direct terminal repetition. It is longer than the viral RNA at both ends, evidently due to repetitive copying of segments of the RNA. Virions also synthesize an 8.4 kbp double-stranded circular DNA that lacks one copy of the terminal repetition, as well as viral DNA longer than 9 kbp. The enzymatic machinery in the virions of retroviruses therefore appears to be responsible for all the steps involved in making fully double-stranded linear and one form of circular DNA.  相似文献   

16.
A technique is described for staining DNA in polyacrylamide gels with silver. It is rapid, requiring about 30 min for whole staining and development procedure, very simple and at least 20 times more sensitive than ethidium bromide for the staining of double-stranded DNA in polyacrylamide gels. This technique can also be applied for the staining of denatured, single-stranded DNA as well as RNA after their electrophoretic separation on polyacrylamide gels, having the same sensitivity as for double-stranded DNA fragments.  相似文献   

17.
Using fluorescence of 2-aminopurine-substituted oligonucleotide duplexes, “flipping” of the target base in the process of interaction of T4 DNA-(adenine-N 6)-methyltransferase (EC 2.1.1.72) with the substrate double-stranded DNA was revealed. It was shown thatS-adenosyl-L-methionine, the methyl group donor, induces the reorientation of the enzyme relative to the unsymmetrically modified recognition site.  相似文献   

18.
Electrochemically induced oxidative damage to DNA was studied with double-stranded calf thymus DNA immobilized directly on a gold electrode surface. Pre-polarization of the DNA-modified electrodes at +0.5 V versus Ag/AgCl reference electrode, in a free from DNA blank buffer solution, pH 7.4, allowed for subsequent detection of direct electrochemical oxidation of adsorbed on gold DNA, in the potential range from +0.7 to +0.8 V. The redox potential of the process corresponded to the potentials of the oxidation of guanine bases in DNA. It is shown that with increasing potential scan rate, v, the mechanism of electrochemical oxidation of DNA changes from the irreversible 4e oxidative damage of DNA at low v to reversible 1e oxidation at high v, keeping the electrochemical activity of the adsorbed DNA layer virtually the same.  相似文献   

19.
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.  相似文献   

20.
It is shown by means of circular dichroism studies of variously condensed forms of DNA that the specific supramolecular structure of DNA determines the type of CD spectra. DNA, condensed (crystallized) slowly in the presence of cetyltrimethyl ammonium bromide yields a spectrum very similar to that of DNA in solution in the B-form. The condensates appear in the phase-contrast microscope as spherulitic crystallites. Rapidly condensed DNA in the presence of cetyltrimethyl ammonium bromide shows a spectrum of the psi-type with large negative ellipticites. The influence of condensation velocity upon the supramolecular structure of DNA gives evidence that the various condensation forms of DNA are not thermodynamical equilibrium conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号