首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral clocks are essential for driving cell differentiation. In osteoarthritis, loss of the normal differentiated chondrocyte (cartilage cell) phenotype is causative of disease. We investigated whether clock gene expression differed in osteoarthritic compared to “healthy” chondrocytes and used RNAi to determine whether the differences observed could affect chondrocyte phenotype. Following serum shock, PER2 expression was significantly higher, whereas BMAL1 expression was significantly lower, in osteoarthritic chondrocytes. Knockdown of BMAL1 in “healthy” chondrocytes was associated with higher cell proliferation and MMP13 expression, features characteristic of the osteoarthritic chondrocyte phenotype. Chondrocyte-intrinsic clock disruption may be a critical early step in osteoarthritis development.  相似文献   

2.
3.
The circadian clock is a specialised cell signalling circuit present in almost all cells. It controls the timing of key cell activities such as proliferation and differentiation. In osteoarthritis, expression of two components of the circadian clock, BMAL1 and PER2 is altered in chondrocytes and this change has been causally linked with the increase in proliferation and altered chondrocyte differentiation in disease. IL-1β, an inflammatory cytokine abundant in OA joints, has previously been shown to induce changes in BMAL1 and PER2 expression in chondrocytes. The purpose of this study is to identify the mechanism involved.We found IL-1β treatment of primary human chondrocytes led to activation of NMDA receptors as evidenced by an increase in phosphorylation of GluN1 and an increase in intracellular calcium which was blocked by the NMDAR antagonist MK801. Levels of phosphorylated CREB were also elevated in IL-1β treated cells and this effect was blocked by co-treatment of cells with IL-1β and the NMDAR antagonist MK-801. Knockdown of CREB or inhibition of CREB activity prevented the IL-1β induced increase in PER2 expression in chondrocytes but had no effect on BMAL1. Phosphorylated p65 levels were elevated in IL-1β treated chondrocytes indicating increased NF-κB activation. Inhibition of NF-κB activity prevented the IL-1β induced reduction in BMAL1 expression and partially mitigated the IL-1β induced increase in PER2 expression in chondrocytes. These data indicate that the NMDAR/CREB and NF-κB signalling pathways regulate the core circadian clock components PER2 and BMAL1 in chondrocytes. Given that changes in expression of these clock components have been observed in a wide range of diseases, these findings may be broadly relevant for understanding the mechanism leading to circadian clock changes in pathology.  相似文献   

4.
5.
6.
7.
8.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

9.
Although Hif‐2α is a master regulator of catabolic factor expression in osteoarthritis development, Hif‐2α inhibitors remain undeveloped. The aim of this study was to determine whether Cirsium japonicum var. maackii (CJM) extract and one of its constituents, apigenin, could attenuate the Hif‐2α‐induced cartilage destruction implicated in osteoarthritis progression. In vitro and in vivo studies demonstrated that CJM reduced the IL‐1β‐, IL‐6, IL‐17‐ and TNF‐α‐induced up‐regulation of MMP3, MMP13, ADAMTS4, ADAMTS5 and COX‐2 and blocked osteoarthritis development in a destabilization of the medial meniscus mouse model. Activation of Hif‐2α, which directly up‐regulates MMP3, MMP13, ADAMTS4, IL‐6 and COX‐2 expression, is inhibited by CJM extract. Although cirsimarin, cirsimaritin and apigenin are components of CJM and can reduce inflammation, only apigenin effectively reduced Hif‐2α expression and inhibited Hif‐2α‐induced MMP3, MMP13, ADAMTS4, IL‐6 and COX‐2 expression in articular chondrocytes. IL‐1β induction of JNK phosphorylation and IκB degradation, representing a critical pathway for Hif‐2α expression, was completely blocked by apigenin in a concentration‐dependent manner. Collectively, these effects indicate that CJM and one of its most potent constituents, apigenin, can lead to the development of therapeutic agents for blocking osteoarthritis development as novel Hif‐2α inhibitors.  相似文献   

10.
As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-1β. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metal-lopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-1β on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-1β treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-1β, thereby suggesting potent synergistic action. These results provided novel insights into the important function of miRNAs’ collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.  相似文献   

11.
Abstract

Context: During osteoarthritis (OA), chondrocytes undergo de-differentiation, resulting in the acquisition of a fibroblast-like morphology, decreased expression of collagen type II (colII) and aggrecan, and increased expression of collagen type I (colI), metalloproteinase 13 (MMP13) and nitric oxide synthase (eNOS). Notch signaling plays a crucial role during embryogenesis. Several studies showed that Notch is expressed in adulthood. Objective: The aim of our study was to confirm the involvement of Notch signaling in human OA at in vitro and ex vivo levels. Materials and methods: Normal human articular chondrocytes were cultured during four passages either treated or not with a Notch inhibitor: DAPT. Human OA cartilage was cultured with DAPT for five days. Chondrocytes secreted markers and some Notch pathway components were analyzed using Western blotting and qPCR. Results: Passaging chondrocytes induced a decrease in the cartilage markers: colII and aggrecan. DAPT-treated chondrocytes and OA cartilage showed a significant increase in healthy cartilage markers. De-differentiation markers, colI, MMP13 and eNOS, were significantly reduced in DAPT-treated chondrocytes and OA cartilage. Notch1 expression was proportional to colI, MMP13 and eNOS expression and inversely proportional to colII and aggrecan expression in nontreated cultured chondrocytes. Notch ligand: Jagged1 increased in chondrocytes culture. DAPT treatment resulted in reduced Jagged1 expression. Notch target gene HES1 increased during chondrocyte culture and was reduced when treated with DAPT. Conclusion: Targeting Notch signaling during OA might lead to the restitution of the typical chondrocyte phenotype and even to chondrocyte redifferentiation during the pathology.  相似文献   

12.
13.
14.
Osteoarthritis is the most common degenerative disorder of the modern world. However, many basic cellular features and molecular processes of the disease are poorly understood. In the present study we used oligonucleotide-based microarray analysis of genes of known or assumed relevance to the cellular phenotype to screen for relevant differences in gene expression between normal and osteoarthritic chondrocytes. Custom made oligonucleotide DNA arrays were used to screen for differentially expressed genes in normal (n = 9) and osteoarthritic (n = 10) cartilage samples. Real-time polymerase chain reaction (PCR) with gene-specific primers was used for quantification. Primary human adult articular chondrocytes and chondrosarcoma cell line HCS-2/8 were used to study changes in gene expression levels after stimulation with interleukin-1β and bone morphogenetic protein, as well as the dependence on cell differentiation. In situ hybridization with a gene-specific probe was applied to detect mRNA expression levels in fetal growth plate cartilage. Overall, more than 200 significantly regulated genes were detected between normal and osteoarthritic cartilage (P < 0.01). One of the significantly repressed genes, Tob1, encodes a protein belonging to a family involved in silencing cells in terms of proliferation and functional activity. The repression of Tob1 was confirmed by quantitative PCR and correlated to markers of chondrocyte activity and proliferation in vivo. Tob1 expression was also detected at a decreased level in isolated chondrocytes and in the chondrosarcoma cell line HCS-2/8. Again, in these cells it was negatively correlated with proliferative activity and positively with cellular differentiation. Altogether, the downregulation of the expression of Tob1 in osteoarthritic chondrocytes might be an important aspect of the cellular processes taking place during osteoarthritic cartilage degeneration. Activation, the reinitiation of proliferative activity and the loss of a stable phenotype are three major changes in osteoarthritic chondrocytes that are highly significantly correlated with the repression of Tob1 expression.  相似文献   

15.

Introduction

Hypoxia is considered to be a positive influence on the healthy chondrocyte phenotype and cartilage matrix formation. However, hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of osteoarthritis (OA). Thus, we assessed whether healthy and OA chondrocytes have distinct responses to oxygen, particularly with regard to hypertrophy and degradation during redifferentiation.

Methods

Monolayer-expanded healthy and OA chondrocytes were redifferentiated for 14 days in pellet cultures under standard (20% oxygen) or hypoxic (2% oxygen) conditions. Cartilage matrix gene expression, matrix quality and quantity, degradative enzyme expression and HIF expression were measured.

Results

In hypoxia, both healthy and OA chondrocytes had higher human collagen type II, α1 gene (COL2A1), and aggrecan (ACAN) expression and sulfated glycosaminoglycan (sGAG) accumulation, concomitant with lower human collagen type X, α1 gene (COL10A1), and human collagen type I, α1 gene (COL1A1), expression and collagen I extracellular accumulation. OA chondrocytes had significantly lower sGAGs/DNA than healthy chondrocytes, but only in high oxygen conditions. Hypoxia also caused significantly greater sGAG retention and hyaluronic acid synthase 2 (HAS2) expression by OA chondrocytes. Both healthy and OA chondrocytes had significantly lower expression of matrix metalloproteinases (MMPs) MMP1, MMP2, MMP3 and MMP13 in hypoxia and less active MMP2 enzyme, consistent with lower MMP14 expression. However, aggrecanase (ADAMTS4 and ADAMTS5) expression was significantly lowered by hypoxia only in healthy cells, and COL10A1 and MMP13 remained significantly higher in OA chondrocytes than in healthy chondrocytes in hypoxic conditions. HIF-1α and HIF-2α had similar expression profiles in healthy and OA cells, increasing to maximal levels early in hypoxia and decreasing over time.

Conclusions

Hypoxic culture of human chondrocytes has long been acknowledged to result in increased matrix accumulation, but still little is known of its effects on catabolism. We show herein that the increased expression of matrix proteins, combined with decreased expression of numerous degradative enzymes by hypoxia, minimizes but does not abolish differences between redifferentiated healthy and OA chondrocytes. Hypoxia-induced HIF expression is associated with hypertrophic marker and degradative enzyme downregulation and increased measures of redifferentiation in both healthy and OA chondrocytes. Therefore, though HIFs may be involved in the pathogenesis of OA, conditions that promote HIF expression in vitro promote matrix accumulation and decrease degradation and hypertrophy, even in cells from OA joints.  相似文献   

16.
17.
The aim of this study was to explore the role of hsa_circRNA_0000205 (circ_0000205) in chondrocyte injury in osteoarthritis (OA) and the underlying mechanism. Expression of circ_0000205, microRNA (miR)-766-3p and a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 was detected by quantitative real time (qRT)-polymerase chain reaction (PCR) and Western blot assays. Cell proliferation, apoptosis, and extracellular matrix (ECM) synthesis were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 5-ethynyl-2-deoxyuridine assays, flow cytometry, and qRT-PCR and Western blot assays. The target relationship between miR-766-3p and circ_0000205 or ADAMTS5 was confirmed by luciferase reporter assay and RNA immunoprecipitation. IL-1β treatment could attenuate cell viability of primary chondrocytes and proliferating cell nuclear antigen (PCNA) and collagen II type alpha-1 (COL2A1) levels, and elevate apoptosis rate and cleaved caspase-3, ADAMTS5 and matrix metalloproteinase-13 (MMP13) levels, suggesting that IL-1β induced chondrocyte apoptosis and ECM degradation. Expression of circ_0000205 was up-regulated in OA tissues and IL-1β-induced primary chondrocytes, accompanied with miR-766-3p down-regulation and ADAMTS5 up-regulation. Knockdown of circ_0000205 could mitigate IL-1β-induced above effects and improve cell proliferation. Moreover, both depleting miR-766-3p and promoting ADAMTS5 could partially counteract circ_0000205 knockdown roles in IL-1β-cultured primary chondrocytes. Notably, circ_0000205 was verified as a sponge for miR-766-3p via targeting, and ADAMTS5 was a direct target for miR-766-3p. Silencing circ_0000205 could protect chondrocytes from IL-1β-induced proliferation reduction, apoptosis, and ECM degradation by targeting miR-766-3p/ADAMTS5 axis.  相似文献   

18.
Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃ (1,25-(OH)2D3) is synthesized by macrophages derived from synovial fluid of patients with inflammatory arthritis. Vitmain D receptor is expressed in chondrocytes within osteoarthritic cartilage, suggesting a contributory role of 1,25-(OH)2D3 in the aberrant behavior of chondrocytes in OA. However, the physiological function of 1,25-(OH)2D3 on chondrocytes in OA remains obscure. Effect of 1,25-(OH)2D3 on gene expression in chondrocytes was investigated in this study. We found that 1,25-(OH)2D3 activated MMP13 expression in a dose-dependent and time-dependent manner, a major enzyme that targets cartilage for degradation. Interestingly, a specific mitogen-activated protein kinase p38 inhibitor SB203580, but not JNK kinase inhibitor SP600125, abrogated 1,25-(OH)2D3 activation of MMP13 expression. 1,25-(OH)2D3-induced increase in MMP13 protein level was in parallel with the phosphorylation of p38 in chondrocytes. To further address the effect of 1,25-(OH)2D3 on MMP13 expression, transfection assays were used to show that 1,25-(OH)2D3 activated the MMP13 promoter reporter expression. MMP13 is known to target type II collagen and aggrecan for degradation, two major components of cartilage matrix. We observed that the treatment of 1,25-(OH)2D3 in chondrocytes results in downregulation of both type II collagen and aggrecan while MMP13 was upregulated. Taken together, we provide the first evidence to demonstrate that 1,25-(OH)2D3 activates MMP13 expression through p38 pathway in chondrocytes. Since MMP13 plays a major role in cartilage degradation in OA, we speculate that the ability of 1,25-(OH)2D3 to potentiate MMP13 expression might facilitate cartilage erosion at the site of inflammatory arthritis.  相似文献   

19.
BackgroundCurrent tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential.MethodsPorcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically.ResultsHuman chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions.ConclusionsSynoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号