首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenolic compounds and antioxidant activity from red grape marc extracts   总被引:11,自引:0,他引:11  
The aims of this work were to determine the amounts of the different classes of phenolic compounds in an ethanolic extract from red grape marc and its components, peels and seeds, and to evaluate their antioxidant activities by the beta-carotene bleaching test for their utilization as natural antioxidants. The results showed that red grape marc was rich in polyphenol compounds with a clear antioxidant activity. The extracts, in fact, at very low concentration (20 ppm) in total phenols showed an antioxidant activity (AA) higher than 43% on average, while at higher concentration (80-160 ppm) all the fractions had an AA comparable to that of butlylated-hydroxytoluene. Grape seeds seemed to give the highest contribution to such AA, as they contained high quantities of proanthocyanidines, a type of flavonoid known for its high antioxidant properties.  相似文献   

2.
As reported in the European Community regulation, grappa is a spirit beverage made in Italy from marc that has been steam distilled or distilled after the addition of water. Grape marc from red grapes has already undergone alcoholic fermentation with the must and can be distilled immediately. Grape marc from white grapes does not contain ethanol but contains sugars that are fermented by spontaneous anaerobic fermentation during a storage period. The characteristic aroma of grappa consists of a large number of volatile compounds, which arise from various sources, the most important of which is yeast. Very few studies have been undertaken to characterize the natural populations of yeast during the fermentation of grape marc. The goal of this study was to understand how different pHs, temperatures and yeast starter cultures affect the growth and dynamics of yeast species involved in pomace fermentation, which could be the basis for improving the final quality of grappa production. We found that a temperature of 15°C has the greatest effect on improving the quality of the product. Unfortunately, due to the solid state of the grape marc and the impossibility of its mixing, it appears that acidification and the addition of yeast starter cultures during the silage period are not effective.  相似文献   

3.
The aim of this work was to study the influence of the organic wastes derived from the winery and distillery industry (grape stalk (GS), grape marc (GM), wine lees (WL) and exhausted grape marc (EG)) and the soil type (clayey-loam (S1), loam (S2) and sandy textured (S3)) on different soil characteristics, especially the carbon and nitrogen mineralisation. The evolution of C mineralisation fitted a first-order kinetic for all amended soils. An initial increase was observed in the specific respiration (qCO(2)) at the beginning of the experiment. However, afterwards, the evolution in the qCO(2) was to tend towards the values of the control soil due to the pattern of the soil to recover its initial equilibrium status. The addition of these materials in the soils produced a slight increase of the inorganic nitrogen content, except in the case of GS and EG in most of the studied soils. The use of GS as amendment produced an inhibition in the N mineralisation in the three types of soils studied. Organic matter mineralisation was probably influenced by soil type, the sandy soil favouring more the N and C mineralisation processes than the clayey-loam and loam soils.  相似文献   

4.
The aim of this study was to monitor some microbial indicators and pathogen contents (sulphite reducers clostridia, total enterobacteriaceae, total coliforms, faecal coliforms (Escherichia coli), enterococci, Staphylococcus aureus and Salmonella spp.) throughout the co-composting of wastes from the winery and distillery industry with other organic residues, as well as the effect of the composting system used. Seven different piles using mixtures of winery-distillery wastes with other organic materials were prepared. P1 and P2 were made using grape stalk (GS), grape marc (GM), exhausted grape marc (EGM) and sewage sludge (SS), whereas in P3 and P4 were also used exhausted grape marc with cow manure (CW) and poultry manure (PM), respectively, using the Rutgers system. Additionally, P2 was watered with vinasse (V). The rest of piles (P5, P6 and P7) were prepared with grape marc, exhausted grape marc, cow manure and poultry manure, using the turning system. The effectiveness of the composting process to reduce the pathogen content was higher in the static aerated piles than in those elaborated with the turning. The relatively high temperatures (50-60 degrees C) reached in some of the piles produced a notable decrease in some microbial groups, such as total and faecal coliforms (E. coli), but the characteristics of the raw materials used notably influenced the pathogen contents of the end-product.  相似文献   

5.
Aims: To investigate the action of different polyphenolic compounds, extracted from red wine, grape marc and pine bark, on oral bacteria. Methods and Results: The anti-microbial activity of extracts was examined by determining the Minimal Inhibitory Concentration and Minimal Bactericidal Concentration using the macro dilution broth technique. Their effect on the adherence was tested on growing cells of Streptococcus mutans on a glass surface and on a multi-species biofilm grown on saliva-coated hydroxyapatite discs. The effect on glucosyltransferase activity was analysed through the reductions in the overall reaction rate and the quantity of insoluble glucan (ISG) synthesized. Pine bark and grape marc extracts were the most effective inhibitors of the multi-species biofilm formation and of the ISG synthesis. Conclusion: The tested components showed an interesting anti-plaque activity in vitro. Significance and Impact of the Study: This is, to our knowledge, the first and the most complete report on the properties of wine and pine bark extracts that could be used for oral disease prevention purpose.  相似文献   

6.
An alternative utilization of virgin grape marc (VGM) to produce SCP from S. ceretisiae is reported. A simple extraction method of fresh grape marc produces a sugar-rich solution: through fed-batch fermentation, a high-value yeast biomass instead of a low-value product like ethanol can be produced. Productivity and quality of yeast are similar to these obtainable from molasses. The convenience of yeast production from VGM is briefly discussed; it appears of great interest in south Italy and generally in grape-producing countries, specially if these lack relevant sources of fermentable sugars.  相似文献   

7.
Abstract

Aim of the project was the bioassay guided optimisation of extraction methods applied to wine chain by-product to obtain extracts, fractions and biologically active biomolecules with a possible use in the nutraceutical and cosmeceutical industry. Exhausted red and white grape marc were extracted using water:ethanol 50:50 with ultrasound assisted extraction and Naviglio® technology; and also with supercritical fluid extraction (SFE) and steam-distillation obtaining different phytocomplexes. Each extract was characterised by different molecular category: exhausted red grape marc (VCR) by anthocyanins, exhausted white grape marc (VCB) by flavonoids, and grapeseed (VIN) by proanthocyanins. SFE and steam-distillation, instead, highlighted the presence of fatty acids and their ester in every matrix, but terpenoids were not revealed at level major or equal than 0.1%, except for manoyl oxide in VCR (2.89%). VIN was the most abundant matrix in polyphenols (506.24?±?55.91?mg gallic acid/g dried extract), and it showed the highest antioxidant activity (IC50 of 4.30?μg/mL). Regarding the antimicrobial activity, the hydroalcoholic extracts from VCR, VCB and VIN were tested but no noteworthy activities have been recorded.  相似文献   

8.
Compost suppression of soil-borne diseases in horticultural crops has been attributed to the activities of antagonistic microorganisms. A great diversity of microorganisms, capable of suppressing pathogens naturally colonize compost. A large number of microbes appeared in microbiological analyses of grape marc compost. Most microorganisms were bacteria. Average percentages were 31% mesophilic and 28% thermophylic bacteria, 16% mesophilic actinomycetes and 20% thermophylic actinomycetes. Only a few mould and yeast morphologies were obtained, 4% and 1% respectively. Antagonist in vitro assays were performed with 432 microbial morphologies isolated from grape marc compost. The microbes isolated were extremely effective antagonists in in vitro assays against all the fungal pathogens tested. Seven microorganisms were selected for further bioassay with Rhizoctonia solani in radish, Fusarium oxysporum f. sp. radicis-cucumerinum in melon, and Phytophthora parasitica in tomato and two microorganisms with Pythium aphanidermatum in cucumber. Those experiments indicate that grape marc compost reduces the severity of Pythium damping-off in cucumber, but does not reduce the severity of Phytophthora root rot in tomato, Fusarium oxysporum f. sp. radicis-cucumerinum in melon and Rhizoctonia solani in radish. Better suppressive effects were not demonstrated by either compost or vermiculite amended with microbes selected from grape marc compost.  相似文献   

9.
The olive mill waste generated from olive oil extraction is a major environmental issue, particularly in Mediterranean areas. The extraction of olive oil is achieved through discontinuous or continuous processes. The two processes yield three fractions: a solid residue and two liquid phases (oil and olive mill wastewater). The characterization of these two by-products showed that they are mainly composed of phenolic compounds, carbohydrates, organic acids and mineral nutrients variably distributed depending on the process employed and the agronomic practices. Untreated olive by-products discharged between November and March into the environment are a major ecological issue for olive oil-producing countries due to their high toxic organic loads, low pH, and high chemical and biological demands. In this context, recent research studies highlight on the treatment approaches and valorization options for dealing with olive mill waste residues, predominantly those allowing for the recovery of valuable natural components such as phenolic compounds, dietary fibers, animal feed, biofuel, biogaz, enzymes, polymers and other. The impact of the chemical heterogeneity and water content of olive mill by-products about these processes of valorization and bioconversion is discussed.  相似文献   

10.
Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.  相似文献   

11.
In the context of increasing demand for renewable alternatives of fuels and chemicals, the valorization of lignin emerges as a value-adding strategy in biorefineries and an alternative to petroleum-derived molecules. One of the compounds derived from lignin is ferulic acid (FA), which can be converted into valuable molecules such as vanillin. In microorganisms, FA biotransformation into vanillin can occur via a two-step reaction catalyzed by the sequential activity of a feruloyl-CoA synthetase (FCS) and an feruloyl-CoA hydratase-lyase (FCHL), which could be exploited industrially. In this study, a prokaryotic FCHL derived from a lignin-degrading microbial consortium (named LM-FCHL) was cloned, successfully expressed in soluble form and purified. The crystal structure was solved and refined at 2.1 Å resolution. The LM-FCHL is a hexamer composed of a dimer of trimers, which showed to be quite stable under extreme pH conditions. Finally, small angle X-ray scattering corroborates the hexameric state in solution and indicates flexibility in the protein structure. The present study contributes to the field of lignin valorization to valuable molecules by establishing the biophysical and structural characterization for a novel FCHL member of unique characteristics.  相似文献   

12.
Two biological control practices are the use of suppressive growing media and the application of biological control agents (BCAs). The goals of this study were: (i) to screen 584 potential BCAs obtained from Fusarium wilt (FW) suppressive growing media; (ii) to evaluate in greenhouse conditions selected BCAs in three growing media with different degrees of suppressiveness of tomato FW. Two isolates selected after screening were identified as Fusarium solani (305) and Streptomyces sp. (A19). Results showed that tomato FW was reduced and total production was improved when both BCAs were applied to a conducive medium (coir fiber). In highly suppressive growing medium (grape marc compost), A19 and 305 inoculations did not improve suppressiveness. In moderately suppressive growing medium (cork compost), only A19 improved this compost to natural grape marc compost suppressiveness level. Therefore, compost suppressiveness of tomato FW depended on the nature of the compost and on the isolates applied.  相似文献   

13.
Evidence for biological nature of the grape replant problem in California   总被引:2,自引:0,他引:2  
Westphal  Andreas  Browne  Greg T.  Schneider  Sally 《Plant and Soil》2002,242(2):197-203
A bioassay was developed to investigate causes of grape replant problems under controlled conditions. Soils were collected from methyl bromide-fumigated and non-fumigated plots at a site cleared from a 65-year-old grape vineyard (Vitis vinifera cv. Thompson seedless) at Parlier, CA. Subsamples of the non-fumigated soil were either left non-treated, subjected to autoclaving (twice 45 min), or heating at 40, 50, 60, 70, 80 or 90 °C for 30 min. Subsequently, the samples were placed in 120-mL pots, planted with rooted hardwood grape cuttings (V. vinifera, cv. Carignane) and placed in a greenhouse or growth chamber. Three months after transplanting, vines from non-treated or 40 °C-treated soil had lower shoot weights and densities of healthy lateral roots than vines from the other treatments. Pythium spp. were isolated from 45 to 55% of the plated root segments from vines grown in non-treated, or soil that had been heated at 40 or 50 °C but were not detected in roots from soil given other treatments. Egg masses of root-knot nematode, Meloidogyne spp., were produced on roots from non-treated or heated at 40 °C soil, but no egg masses were detected on roots of the other treatments. In another test with the same soils, remnant roots from non-fumigated or pre-plant methyl bromide-fumigated soil were extracted and amended to non-fumigated soil, soil from fumigated field plots, soil fumigated in a small container, or autoclaved potting mix. The transfer of old vine roots from non-fumigated field soil resulted in incidence of Pythium spp. on grape assay roots, but there was no measurable effect of the transfer on growth and health of the bioassay plant roots. The results of the bioassays indicate that grape replant problem at the California site had biological causes. The bioassay approach may aid in future determinations of the etiology of grape replant problems.  相似文献   

14.
The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.  相似文献   

15.
The volatile compounds produced by Debaryomyces hansenii NRRL Y-7426 during the fermentation of detoxified concentrated distilled grape marc hemicellulosic hydrolysates was analysed by GC?CMS. Thirty-five compounds corresponding to ten groups of volatile compounds: terpenes, higher alcohols, C6 alcohols, aldehydes, volatile acids, acetates, ethyl esters, volatile phenols, sulphur compounds and hydrocarbons were identified. The supplementation with commercial nutrients increased the concentration of 2-phenylethanol, a commercial flavour and fragrance compound, with a rose-like odour, employed in cosmetics and food industries; and other positive compounds to the aroma such as terpenes and ethyl esters. Non-supplemented media produced the highest content in higher alcohols, volatile acids, sulphur compounds and in the majority of hydrocarbons detected, meanwhile supplementation with vinasses hardly produced volatile compounds. Only four volatile compounds contributed directly to the aroma according to the OAVs values higher than 1. Finally, a PCA analysis allowed accounting for 100?% of the variance.  相似文献   

16.
Microbial assessment of grape marc wastes, the residual solid by-product of the wine-industry, was performed by identifying phylogenetically the fungal culturable diversity in order to evaluate environmental and disposal safety issues and to discuss ecological considerations of applications on agricultural land. Fungal spores in grape marc were estimated to 4.7×106 per g dry weight. Fifty six fungal isolates were classified into eight operational taxonomic units (OTUs) following amplified ribosomal DNA restriction analysis (ARDRA) and colony morphology. Based on 18S rRNA gene and 5.8S rRNA gene-ITS sequencing, the isolates representing OTUs #1, #2, #3, and #4, which comprised 44.6%, 26.8%, 12.5%, and 5.3%, respectively, of the number of the total isolates, were identified as Aspergillus fumigatus, Bionectria ochroleuca, Haematonectria haematococca, and Trichosporon mycotoxinivorans. The isolates of OTU#5 demonstrated high phylogenetic affinity with Penicillium spp., while members of OTUs #6 and #7 were closer linked with Geotrichum candidum var. citri-aurantii and Mycocladus corymbifer, respectively (95.4 and 97.9% similarities in respect to their 5.8S rRNA gene-ITS sequences). The OTU#8 with a single isolate was related with Aspergillus strains. It appears that most of the fungal isolates are associated with the initial raw material. Despite the fact that some of the species identified may potentially act as pathogens, measures such as the avoidance of maintaining large and unprocessed quantities of grape marc wastes in premises without adequate aeration, together with its suitable biological treatment (e.g., composting) prior to any agriculture-related application, could eliminate any pertinent health risks.  相似文献   

17.
This report introduces the biotechnological valorization potential indicator (BVPI) concept, a metric to measure the degree of suitability of lignocellulosic materials to be used as feedstock in a biorefinery framework. This indicator groups the impact of the main factors influencing upgrade-ability, both the biological/chemical nature of the materials, and the economical, technological and geographical factors. The BVPI was applied to the identification of the most relevant opportunities and constraints pertaining to the lignocellulosic by-products from the Portuguese agro-industrial cluster. Several by-products were identified with a high valorization potential, e.g., rice husks, brewery's spent grain, tomato pomace, carob pulp, de-alcoholized grape bagasse, and extracted olive bagasse, that would greatly benefit from the further development of specific biotechnology processes, specifically concerning the upgrade of their hemicellulosic fraction.  相似文献   

18.
Wine flavor and aroma   总被引:1,自引:0,他引:1  
The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of “terroir” (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.  相似文献   

19.
Thermo-gravimetric analysis (TGA) was performed on grape seeds, skins, stalks, marc, vine-branches, grape seed oil and grape seeds depleted of their oil. The TGA data was modeled through Gaussian, logistic and Miura-Maki distributed activation energy models (DAEMs) and a simpler two-parameter model. All DAEMs allowed an accurate prediction of the TGA data; however, the Miura-Maki model could not account for the complete range of conversion for some substrates, while the Gaussian and logistic DAEMs suffered from the interrelation between the pre-exponential factor k0 and the mean activation energy E0 - an obstacle that can be overcome by fixing the value of k0a priori. The results confirmed the capabilities of DAEMs but also highlighted some drawbacks in their application to certain thermodegradation experimental data.  相似文献   

20.
Lignin depolymerization generates a mixture of numerous compounds that are difficult to separate cost-effectively. To address this heterogeneity issue, microbes have been employed to ‘biologically funnel’ a broad range of compounds present in depolymerized lignin into common central metabolites that can be converted into a single desirable product. Because the composition of depolymerized lignin varies significantly with the type of biomass and the depolymerization method, microbes should be selected and engineered by considering this compositional variation. An ideal microbe must efficiently metabolize all relevant lignin-derived compounds regardless of the compositional variation of feedstocks, but discovering or developing such a perfect microbe is very challenging. Instead, developing multiple tailored microbes to tolerate a given mixture of lignin-derived compounds and to convert most of these into a target product is more practical. This review summarizes recent progress toward the development of such microbes for lignin valorization and offers future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号