首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The increasing incidence of venous thromboembolism (VTE) in paediatric population has stimulated the development of liquid anticoagulant formulations. Thus our goal is to formulate a liquid formulation of poorly-water soluble anticoagulant, rivaroxaban (RIVA), for paediatric use and to assess the possibility of its intravenous administration in emergencies. Self-nanoemulsifying drug delivery systems (SNEDDSs) were developed and characterized. SNEDDS constituents were estimated from the saturated solubility study followed by plotting the corresponding ternary phase diagrams to determine the best self-emulsified systems. Thermodynamic stability, emulsification, dispersibility, robustness to dilution tests, in vitro dissolution, particle size, and zeta potential were executed to optimize the formulations. The optimized formulation, that composed of Capryol 90:Tween 20:PEG 300 (5:45:50), increased RIVA solubility (285.7-fold than water), it formed nanoemulsion with a particle size of 16.15?nm, PDI of 0.25 and zeta potential of ?21.8. It released 100.83?±?2.78% of RIVA after 5?min. SNEDDS was robust to dilution with oral and parenteral fluids and showed safety to human RBCs. SNEDDS showed enhanced bioavailability after oral and intravenous administration than the oral drug suspension (by 1.25 and 1.26-fold, respectively). Moreover, it exhibited enhanced anticoagulant efficacy in the prevention and treatment of carrageenan-induced thrombosis rat model.  相似文献   

2.
Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6?±?3.28, 54.4?±?4.26, 56.1?±?7.48 and 46.0?±?2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16?±?4.22, 24.81?±?5.35, 8.17?±?1.81 and 8.92?±?3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection.  相似文献   

3.
The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.  相似文献   

4.
《Phytomedicine》2014,21(3):307-314
Berberine, an isoquinoline alkaloid, has wide biological and pharmacological actions. Despite the promising pharmacological effects and safety of berberine, poor oral absorption due to its extremely low aqueous solubility results in poor oral systemic bioavailability. This limits its clinical usage. This study describes the development and characterization of self-nanoemulsifying drug delivery system (SNEDDS) of berberine in liquid as well as solid form with improved solubility, dissolution and in vivo therapeutic efficacy. The SNEDDS of berberine were prepared using Acrysol K-150, Capmul MCM and polyethylene glycol 400. The formulations were characterized for various in vitro physicochemical characteristics. In vivo efficacy was evaluated in acetic acid induced inflammatory bowel model in rats. Anti-angiogenic activity of the developed SNEDDS of berberine was studied using chick chorioallantoic membrane assay. SNEDDS of berberine rapidly formed nanoemulsions with globule size of 17–45 nm. The in vitro rate and extent of release of berberine from SNEDDS was significantly higher than berberine alone. Chick chorioallantoic membrane assay revealed potent anti-angiogenic activity of SNEDDS of berberine. These studies demonstrate that the SNEDDS of berberine is a promising strategy for improving its therapeutic efficacy and have potential application in the treatment of chronic inflammatory conditions and cancer.  相似文献   

5.
Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their spontaneous emulsifying property, dissolution of nifedipine (NDP), as well as the pharmacokinetic profile of selected SNEDDS formulation. The results showed that the composition of the SNEDDS was a great importance for the spontaneous emulsification. Based on ternary phase diagram, the region giving the SNEDDS with emulsion droplet size of less than 300 nm after diluting in aqueous medium was selected for further formulation. The small-angle X-ray scattering curves showed no sharp peak after dilution at different percentages of water, suggesting non-ordered structure. The system was found to be robust in different dilution volumes; the droplet size was in nanometer range. In vitro dissolution study showed remarkable increase in dissolution of NDP from SNEDDS formulations compared with NDP powders. The pharmacokinetic study of selected SNEDDS formulation in male Wistar rats revealed the improved maximum concentration and area under the curve. Our results proposed that the developed SNEDDS formations could be promising to improve the dissolution and oral bioavailability of NDP.KEY WORDS: nifedipine, poorly water-soluble drug, self-emulsifying drug delivery system, spontaneous emulsification  相似文献   

6.
Background: Rosuvastatin (ROS) calcium is the latest synthetic drug in the statin group that has an anti-hyperlipidemic activity. It is available as tablets, and its poor aqueous solubility, slow dissolution rate and low-absorption extent result in less than 20% bioavailability and about 80% being excreted unchanged in the feces without absorption.

Objective: To utilize nanotechnology to reformulate ROS as a self-nano-emulsifying drug delivery system (SNEDDS), and utilizing design optimization to fabricate the SNEDDS as a tablet.

Methods: The solubility of ROS in different oils, surfactants and co-surfactants was tested. Pseudo-ternary phase diagrams were developed and various SNEDDS formulations were prepared and evaluated regarding globule size, self-emulsification, viscosity and transmittance. The optimized system was examined using transmission electron microscopy. The self-nano-emulsifying tablets were prepared using two types of nano-silica and different percentages of Avicel as a binder and Ac-Di-Sol as a disintegrant. The prepared tablets were evaluated for their physicochemical properties. Bioavailability in human volunteers was assessed.

Results: A SNEDDS system was successfully developed with a droplet size range of 15?nm and a composition of 10% Labrafac, 80% Cremophore RH40 and 10% Propylene glycol. The optimized tablet formula contained: hydrophilic nano-silica, 3% Ac-Di-Sol and 30% Avicel. The pharmacokinetic study revealed that the bioavailability was enhanced by more than 2.4-fold compared with the commercially available tablet.

Conclusions: Tablets containing SNEDDS loaded with ROS represent a promising novel formula that has higher gastrointestinal absorption and enhanced systemic bioavailability.  相似文献   

7.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems.  相似文献   

8.
The aim of present study was to develop conventional and PEGylated (long circulating), liposomes containing anastrozole (ANS) for effective treatment of breast cancer. ANS is a third-generation non-steroidal aromatase inhibitor of the triazole class used for the treatment of advanced and late-stage breast cancer in post-menopausal women. Under such disease conditions the median duration of therapy should be prolonged until tumor regression ends (>31 months). Liposomes were prepared by the thin film hydration method by using ANS and various lipids such as soyaphosphatidyl choline, cholesterol and methoxy polyethylene glycol distearoyl ethanolamine in different concentration ratios and evaluated for physical characteristics, in vitro drug release and stability. Optimized formulations of liposome were studied for in vitro cytotoxic activity against the BT-549 and MCF-7 cell lines and in vivo behavior in Wistar rats. Preformulation studies, both Fourier transform infrared study and differential scanning calorimetry analysis showed no interaction between the drug and the excipients used in the formulations. The optimized formulations AL-07 and AL-09 liposomes showed encapsulation efficiencies in the range 65.12?±?1.05% to 69.85?±?3.2% with desired mean particle size distribution of 101.1?±?5.9 and 120.2?±?2.8?nm and zeta potentials of ?43.7?±?4.7 and ?62.9?±?3.5 mV. All the optimized formulations followed Higuchi-matrix release kinetics and when plotted in accordance with the Korsemeyer–Peppas method, the n-value 0.5?n?in vitro cytotoxicity studies (p?(0–∞) values when compared to pure drug (p?相似文献   

9.
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.  相似文献   

10.
Sunitinib malate (SM) is reported as a weakly soluble drug in water due to its poor dissolution rate and oral bioavailability. Hence, in the current study, various “self-nanoemulsifying drug delivery systems (SNEDDS)” of SM were prepared, characterized and evaluated for the enhancement of its in vitro dissolution rate and anticancer efficacy. On the basis of solubilization potential of SM in various excipients, “Lauroglycol-90 (oil), Triton-X100 (surfactant) and Transcutol-P (cosurfactant)” were selected for the preparation of SM SNEDDS. SM-loaded SNEDDS were developed by spontaneous emulsification method, characterized and evaluated for “thermodynamic stability, self-nanoemulsification efficiency, droplet size, polydispersity index (PDI), zeta potential (ZP), surface morphology, refractive index (RI), the percent of transmittance (% T) and drug release profile.” In vitro dissolution rate of SM was significantly enhanced from an optimized SNEDDS in comparison with SM suspension. The optimized SNEDDS of SM with droplet size of 42.3 nm, PDI value of 0.174, ZP value of ?36.4 mV, RI value of 1.339, % T value of 97.3%, and drug release profile of 95.4% (after 24 h via dialysis membrane) was selected for in vitro anticancer efficacy in human colon cancer cells (HT-29) by MTT assay. MTT assay indicated significant anticancer efficacy of optimized SM SNEDDS against HT-29 cells in comparison with free SM. The results of this study showed the great potential of SNEDDS in the enhancement of in vitro dissolution rate and anticancer efficacy of poorly soluble drug such as SM.  相似文献   

11.
The present studies entail formulation development of novel solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of valsartan with improved oral bioavailability, and evaluation of their in vitro and in vivo performance. Preliminary solubility studies were carried out and pseudoternary phase diagrams were constructed using blends of oil (Capmul MCM), surfactant (Labrasol), and cosurfactant (Tween 20). The SNEDDS were systematically optimized by response surface methodology employing 33-Box–Behnken design. The prepared SNEDDS were characterized for viscocity, refractive index, globule size, zeta potential, and TEM. Optimized liquid SNEDDS were formulated into free flowing granules by adsorption on the porous carriers like Aerosil 200, Sylysia (350, 550, and 730) and Neusilin US2, and compressed into tablets. In vitro dissolution studies of S-SNEDDS revealed 3–3.5-fold increased in dissolution rate of the drug due to enhanced solubility. In vivo pharmacodynamic studies in Wistar rats showed significant reduction in mean systolic BP by S-SNEDDS vis-à-vis oral suspension (p < 0.05) owing to the drug absorption through lymphatic pathways. Solid-state characterization of S-SNEDDS using FT-IR and powder XRD studies confirmed lack of any significant interaction of drug with lipidic excipients and porous carriers. Further, the accelerated stability studies for 6 months revealed that S-SNEDDS are found to be stable without any change in physiochemical properties. Thus, the present studies demonstrated the bioavailability enhancement potential of porous carriers based S-SNEDDS for a BCS class II drug, valsartan.KEY WORDS: BCS, bioavailability, in vitro dissolution, porous carriers, XRD  相似文献   

12.
The present study aimed to evaluate the potential of liposomes loaded with paromomycin (PA), an aminoglycoside antibiotic associated with poor skin penetration, for the topical treatment of cutaneous leishmaniasis (CL). Fluid liposomes were prepared and characterized for particle size, zeta potential, and drug entrapment. Permeation studies were performed with two in vitro models: intact and stripped skin. The antileishmanial activity of free and liposomal PA was evaluated in BALB/c mice infected by Leishmania (L.) major. Drug entrapment ranged from 10 to 14%, and the type of vesicle had little influence on this parameter. Particle size and polydispersity index of the vesicles composed by phosphatidylcholine (PC) and PC/cholesterol (Chol) ranged from of 516 to 362?nm and 0.7 to 0.4, respectively. PA permeation across intact skin was low, regardless of the formulation tested, while drug penetration into skin (percent of the applied dose) from PC (7.2?±?0.2%) and PC/Chol (4.8?±?0.2%) liposomes was higher than solution (1.9?±?0.1%). PA-loaded liposomes enhanced in vitro drug permeation across stripped skin and improved the in vivo antileishmanial activity in experimentally infected mice. Our findings suggest that the liposomes represent a promising alternative for the topical treatment of CL using PA.  相似文献   

13.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

14.
Tolnaftate is a thiocarbamate antifungal drug which is therapeutically active against dermatophytes that cause various forms of tinea. Due to the small amount of tolnaftate released from ordinary ointment bases and insufficient penetration through the infected skin layers the need to incorporate the drug in a more suitable pharmaceutical form has evolved. A provesicular system is one such form that can solve these problems. Once in contact with the skin, dilution with moisture occurs and the provesicular system rapidly transforms into a vesicular one. Provesicular systems were prepared according to full-factorial experimental design. Plain provesicular systems were compared with systems containing Phospholipon 80?H and Lipoid S45 as penetration enhancers. Design expert software was used to analyze the effect of formulation variables (type of Span used as well as the presence or the absence of the penetration enhancer and its type) on the dependent variables: percent encapsulation efficiency (EE%), vesicle size and percent in vitro drug released). Three formulations were chosen; a plain provesicular system (PV-2), one containing Phospholipon 80H (PV-6) and another containing Lipoid S45 (PV-10) with the goal to reveal the effect of penetration enhancer on morphology, rheological properties and ex vivo permeation using confocal laser scanning microscopy (CLSM). Analysis of CLSM results showed that the penetration enhancing effect for the tested formulations followed the order PV-10?>?PV-6?>?PV-2. Promising clinically active treatment for tinea patients could be expected as shown by the in vivo permeation results for the provesicular systems as suggested by the CLSM results.  相似文献   

15.
A prerequisite for successful transdermal or dermal drug therapy is the drug ability to penetration through the skin, especially stratum corneum (SC). The most acceptable technique for measuring skin permeation in vitro is the application of both the Franz diffusion cell device and the skin model. In the skin model, a liposome-based artificial skin membrane (LASM) consisting of tight layers of liposomes immobilized on a filter was prepared and characterized. Using porcine ear skin, rat skin and Strat-M? artificial membrane as control, the LASM was then evaluated in permeation studies with five active compounds: ferulic acid, paeoniflorin, albiflorin, tetrahydrocolumbamine, and tetrahydropalmatine. The scanning electron microscope images demonstrated complete filling of the membrane pores with lipids and the formation of a continuous liposomal coating. The contents of egg phosphatidylcholine (EPC) and cholesterol in LASM were measured to be 12.08?±?0.18 and 4.41?±?0.04?mg/cm2, respectively. Moreover, revealed by the measurement of electrical resistance, the LASM remains intact for at least 12?h with the incubation of 20% ethanol. The results of permeation studies demonstrated a good correlation (r2?=?0.9743, r?=?0.9871) of Papp values between the drugs’ permeation through LASM and porcine ear skin. In addition, by ATR-FTIR analysis, a slighter shift of CH2 stretching frequency between LASM and porcine ear skin was observed compared with the shift between Strat-M? membrane and porcine ear skin. In summary, for the first time, the LASM has been proved to be a valuable alternative to porcine ear skin in permeation studies using Franz diffusion cell device.  相似文献   

16.
Hydrochlorothiazide (HCTZ) is a class IV drug according to the Biopharmaceutical Classification System. This study aimed the development of self-nanoemulsifying drug delivery system (SNEDDS) for HCTZ as an approach to overcome the biopharmaceutical limitations. Pre-formulation screening and ternary phase diagrams were carried out to select the oil phase, the surfactant, and the co-surfactant as the amount of each constituent. The optimized formulations, with reduced amount of surfactant, and composed of medium chain triglycerides, Cremophor EL and Transcutol P did not affect the pH or show drug incompatibilities. The SNEDDS were stabilized by the nanoscale globules and high negative zeta potential. All the physicochemical characterization assays were performed in biorelevant media to better predict the in vivo performance. The enhanced dissolution rate of the SNEDDS reflected in the in vivo diuretic activity, presenting a natriuresis, kaliuresis, and chloriuresis at early stages and an increased volume of total urine compared with HCTZ alone. The designed SNEDDS produced an improvement in the pharmacodynamics due to high dissolution and probable inhibition of intestinal efflux protein by Cremophor EL. The use of SNEDDS demonstrated to be an efficient approach to modulate the absorption of HCTZ and drug therapeutics.  相似文献   

17.
The present study aimed to develop buccoadhesive film of glimepiride with unique combination of polymers and to investigate its effect(s) on physicomechanical parameters, drug-release, and permeation of films. Drug-polymer interaction was examined by FTIR and DSC analysis. Films were prepared by solvent casting technique and characterized for film strength (320?±?8.5 g, 28.98?±?2.00 mJ), buccoadhesive strength (28.8?±?1.37 g, 3.04?±?0.32 mJ), and tensile strength (260?±?6.88 g, 18.00?±?0.44 mJ) by new instrumental techniques. Increase in polymer concentration augmented zeta potential of polymeric matrix-mucin mixture and exhibited strong buccoadhesion (electrical theory). Buccoadhesion was also influenced by particle size (adsorption theory) and swelling (wetting theory). Erosion behavior of films was observed in swelling and SEM studies. Film GM4 exhibited 98?±?2% in vitro drug release and 85?±?8% ex vivo drug permeation in 12 h with controlled diffusion mechanism. Films were compatible with oral probiotic microorganisms. Stability studies revealed no significant (P?<?0.05) variation in physicomechanical characteristics.  相似文献   

18.
The study aim was concerned with formulation and evaluation of bioadhesive buccal drug delivery of tizanidine hydrochloride tablets, which is extensively metabolized by liver. The tablets were prepared by direct compression using bioadhesive polymers such as hydroxylpropyl methylcellulose K4M, sodium carboxymethyl cellulose alone, and a combination of these two polymers. In order to improve the permeation of drug, different permeation enhancers like beta-cyclodextrin (β-CD), hydroxylpropyl beta-cyclodextrin (HP-β-CD), and sodium deoxycholate (SDC) were added to the formulations. The β-CD and HP-β-CD were taken in 1:1 molar ratio to drug in formulations. Bioadhesion strength, ex vivo residence time, swelling, and in vitro dissolution studies and ex vivo permeation studies were performed. In vitro release of optimized bioadhesive buccal tablet was found to be non-Fickian. SDC was taken in 1%, 2%, and 3% w/w of the total tablet weight. Stability studies in natural saliva indicated that optimized formulation has good stability in human saliva. In vivo mucoadhesive behavior of optimized formulation was performed in five healthy male human volunteers and subjective parameters were evaluated.  相似文献   

19.
A simple but novel mixed surfactant system was designed to fabricate a self-nanoemulsifying drug delivery system (SNEDDS) based on hydrophilic–lipophilic balance (HLB) value. The impacts of HLB and molecular structure of surfactants on the formation of SNEDDS were investigated. After screening various oils and surfactants, nifedipine (NDP)-loaded liquid SNEDDS was formulated with Imwitor® 742 as oil and Tween®/Span® or Cremophor®/Span® as mixed surfactant. Droplet size of the emulsions obtained after dispersing SNEDDS containing Tween®/Span® in aqueous medium was independent of the HLB of a mixed surfactant. The use of the Cremophor®/Span® blend gave nanosized emulsion at higher HLB. The structure of the surfactant was found to influence the emulsion droplet size. Solid SNEDDS was then prepared by adsorbing NDP-loaded liquid SNEDDS comprising Cremophor® RH40/Span® 80 onto Aerosil® 200 or Aerosil® R972 as inert solid carrier. Solid SNEDDS formulations using higher amounts (30–50% w/w) of Aerosil® 200 exhibited good flow properties with smooth surface and preserved the self-emulsifying properties of liquid SNEDDS. Differential scanning calorimetry and X-ray diffraction studies of solid SNEDDS revealed the transformation of the crystalline structure of NDP due to its molecular dispersion state. In vitro dissolution study demonstrated higher dissolution of NDP from solid SNEDDS compared with NDP powder.  相似文献   

20.
Zolmitriptan is the drug of choice for migraine, but low oral bioavailability (<50%) and recurrence of migraine lead to frequent dosing and increase in associated side effects. Increase in the residence time of drug at the site of drug absorption along with direct nose to brain targeting of zolmitriptan can be a solution to the existing problems. Hence, in the present investigation, thermoreversible intranasal gel of zolmitriptan-loaded nanoethosomes was formulated by using mucoadhesive polymers to increase the residence of the drug into the nasal cavity. The preparation of ethosomes was optimized by using 32 factorial design for percent drug entrapment efficiency, vesicle size, zeta potential, and polydispersity index. Optimized formulation E6 showed the vesicle size (171.67?nm) and entrapment efficiency (66%) when compared with the other formulations. Thermoreversible gels prepared by using poloxamer 407 showed the phase transition temperature at 32–33?°C which was in line with the nasal physiological temperature. The optimized ethosomes were loaded into the thermoreversible mucoadhesive gel optimized by varying concentrations of poloxamer 407, carbopol 934, HPMC K100, and evaluated for gel strength, gelation temperature, mucoadhesive strength, in vitro drug release, and ex vivo drug permeation, where G3 and G6 were found to be optimized formulations. In vitro drug release was studied by different kinetic models suggested that G3 (n?=?0.582) and G6 (n?=?0.648) showed Korsemeyer–Peppas (KKP) model indicating non-Fickian release profiles. A permeation coefficient of 5.92 and 5.9?µg/cm2 for G3 and G6, respectively, revealed very little difference in release rate after 24?h between both the formulations. Non-toxic nature of the gels on columnar epithelial cells was confirmed by histopathological evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号