首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the dynamics of spruce budworm population is very important for the protection of spruce and balsam fir trees of North American forests, and a full understanding of the dynamics requires careful consideration of the individual physiological structures that is essential for outbreak control. A model as a delay differential equation is derived from structured population system, and is validated by comparing simulation results with real data from the Green River area of New Brunswick (Canada) and with the periodic outbreaks widely observed. Analysis of the equilibrium stability and examination of the amplitudes and frequencies of periodic oscillations are conducted, and the effect of budworm control strategies such as mature population control, immature population control and predation by birds are assessed. Analysis and simulation results suggest that killing only budworm larvae might not be enough for the long-term control of the budworm population. Since the time required for development during the inactive stage (from egg to second instar caterpillar) causes periodic outbreak, a strategy of reducing budworms in the inactive stage, such as removing egg biomass, should also be implemented for successful control.  相似文献   

2.
Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts with the oscillations of the unforced system, and both periodic and irregular (quasi-periodic or chaotic) solutions occur. In both cases the periodic solutions include one and multiple period cycles, and each cycle can have several reproduction pulses.  相似文献   

3.
Mashin VA 《Biofizika》2006,51(3):524-533
The connection of the regression slope of heart rate graph (b1) with linear and nonlinear dynamics in stationary short-time series (256 points) was studied. A new index for the estimation of nonlinear dynamics in stationary short-time series was used, which is based on the correlation dimension. The results of the study indicated that the dynamics of heart rate in stationary short-time series can be represented as the sum of linear (periodic) and nonlinear (stochastic) processes. A relation of b1 with both linear and nonlinear dynamics of heart rate was found. The formulas for the calculation of absolute and relative (to the amplitude of periodic fluctuations) noise levels in heart rate dynamics were derived. A comparative analysis of nonlinear dynamics of heart rate in stationary short-time series for different functional states of humans was performed. The increase in the relative noise level in heart rate dynamics with increasing breathing frequency is related not only to a decrease in control breathing amplitude but also to an increase in the noise amplitude. The decrease in the absolute noise level for nervous excitation, fatigue, and mental stress were found. The predominance of nonlinear (stochastic) processes over linear (periodic) processes in the relaxed state was established.  相似文献   

4.
This paper is interested in gaining insights of approximate expressions of the bifurcating periodic solutions in a neuron model. This model shares the property of involving delay-dependent parameters. The presence of such dependence requires the use of suitable criteria which usually makes the analytical work so harder. Most existing methods for studying the nonlinear dynamics fail when applied to such a class of delay models. Although Xu et al. (Phys Lett A 354:126–136, 2006) studied stability switches, Hopf bifurcation and chaos of the neuron model with delay-dependent parameters, the dynamics of this model are still largely undetermined. In this paper, a detailed analysis on approximation to the bifurcating periodic solutions is given by means of the perturbation approach. Moreover, some examples are provided for comparing approximations with numerical solutions of the bifurcating periodic solutions. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only.  相似文献   

5.
In contrast with unstructured models, structured discrete population models have been able to fit and predict chaotic experimental data. However, most of the chaos control techniques in the literature have been designed and analyzed in a one-dimensional setting. Here, by introducing target-oriented control for discrete dynamical systems, we prove the possibility to stabilize a chosen state for a wide range of structured population models. The results are illustrated with introducing a control in the celebrated LPA model describing a flour beetle dynamics. Moreover, we show that the new control allows to stabilize periodic solutions for higher-order difference equations, such as the delayed Ricker model, for which previous target-oriented methods were not designed.  相似文献   

6.
Two SIS epidemiologic models with delays   总被引:8,自引:0,他引:8  
 The SIS epidemiologic models have a delay corresponding to the infectious period, and disease-related deaths, so that the population size is variable. The population dynamics structures are either logistic or recruitment with natural deaths. Here the thresholds and equilibria are determined, and stabilities are examined. In a similar SIS model with exponential population dynamics, the delay destabilized the endemic equilibrium and led to periodic solutions. In the model with logistic dynamics, periodic solutions in the infectious fraction can occur as the population approaches extinction for a small set of parameter values. Received: 10 January 1997 / 18 November 1997  相似文献   

7.
《Ecological Complexity》2005,2(4):395-409
A model of the dynamics of natural rotifer populations is described as a discrete non-linear map depending on three parameters, which reflect characteristics of the population and environment. Model dynamics and their change by variation of these parameters were investigated by methods of bifurcation theory. A phase-parametric portrait of the model was constructed and domains of population persistence (stable equilibrium, periodic and a-periodic oscillations of population size) as well as population extinction were identified and investigated. The criteria for population persistence and approaches to determining critical parameter values are described. The results identify parameter values that lead to population extinction under various environmental conditions. They further illustrate that the likelihood of extinction can be substantially increased by small changes in environmental quality, which shifts populations into new dynamical regimes.  相似文献   

8.
Nonlinear dynamics provides a complementary framework to control theory for the quantitative analysis of the oculomotor control system. This paper presents a number of findings relating to the aetiology and mechanics of the pathological ocular oscillation jerk congenital nystagmus (jerk CN). A range of time series analysis techniques were applied to recorded jerk CN waveforms, and also to simulated jerk waveforms produced by an established model in which the oscillations are a consequence of an unstable neural integrator. The results of the analysis were then interpreted within the framework of a generalised model of the unforced oculomotor system. This work suggests that for jerk oscillations, the origin of the instability lies in one of the five oculomotor subsystems, rather than in the final common pathway (the neural integrator and muscle plant). Additionally, experimental estimates of the linearised foveation dynamics imply that a refixating fast phase induced by a near-homoclinic trajectory will result in periodic oscillations. Local dimension calculations show that the dimension of the experimental jerk CN data increases during the fast phase, indicating that the oscillations are not periodic, and hence that the refixation mechanism is of greater complexity than a homoclinic reinjection. The dimension increase is hypothesised to result either from a signal-dependent noise process in the saccadic system, or the activation of additional oculomotor components at the beginning of the fast phase. The modification of a recent saccadic system model to incorporate biologically realistic signal-dependent noise is suggested, in order to test the first of these hypotheses. Action Editor: Peter Latham  相似文献   

9.
Single species difference population models can show complex dynamics such as periodicity and chaos under certain circumstances, but usually only when rates of intrinsic population growth or other life history parameter are unrealistically high. Single species models with Allee effects (positive density dependence at low density) have also been shown to exhibit complex dynamics when combined with over-compensatory density dependence or a narrow fertility window. Here we present a simple two-stage model with Allee effects which shows large amplitude periodic fluctuations for some initial conditions, without these requirements. Periodicity arises out of a tension between the critical equilibrium of each stage, i.e. when the initial population vector is such that the adult stage is above the critical value, while the juvenile stage is below the critical value. Within this area of parameter space, the range of initial conditions giving rise to periodic dynamics is driven mainly by adult mortality rates. Periodic dynamics become more important as adult mortality increases up to a certain point, after which periodic dynamics are replaced by extinction. This model has more realistic life history parameter values than most 'chaotic' models. Conditions for periodic dynamics might arise in some marine species which are exploited (high adult mortality) leading to recruitment limitation (low juvenile density) and might be an additional source of extinction risk.  相似文献   

10.
Spiking and bursting patterns of neurons are characterized by a high degree of variability. A single neuron can demonstrate endogenously various bursting patterns, changing in response to external disturbances due to synapses, or to intrinsic factors such as channel noise. We argue that in a model of the leech heart interneuron existing variations of bursting patterns are significantly enhanced by a small noise. In the absence of noise this model shows periodic bursting with fixed numbers of interspikes for most parameter values. As the parameter of activation kinetics of a slow potassium current is shifted to more hyperpolarized values of the membrane potential, the model undergoes a sequence of incremental spike adding transitions accumulating towards a periodic tonic spiking activity. Within a narrow parameter window around every spike adding transition, spike alteration of bursting is deterministically chaotic due to homoclinic bifurcations of a saddle periodic orbit. We have found that near these transitions the interneuron model becomes extremely sensitive to small random perturbations that cause a wide expansion and overlapping of the chaotic windows. The chaotic behavior is characterized by positive values of the largest Lyapunov exponent, and of the Shannon entropy of probability distribution of spike numbers per burst. The windows of chaotic dynamics resemble the Arnold tongues being plotted in the parameter plane, where the noise intensity serves as a second control parameter. We determine the critical noise intensities above which the interneuron model generates only irregular bursting within the overlapped windows.  相似文献   

11.
Ground reaction force during human quiet stance is modulated synchronously with the cardiac cycle through hemodynamics [1]. This almost periodic hemodynamic force induces a small disturbance torque to the ankle joint, which is considered as a source of endogenous perturbation that induces postural sway. Here we consider postural sway dynamics of an inverted pendulum model with an intermittent control strategy, in comparison with the traditional continuous-time feedback controller. We examine whether each control model can exhibit human-like postural sway, characterized by its power law behavior at the low frequency band 0.1–0.7 Hz, when it is weakly perturbed by periodic and/or random forcing mimicking the hemodynamic perturbation. We show that the continuous control model with typical feedback gain parameters hardly exhibits the human-like sway pattern, in contrast with the intermittent control model. Further analyses suggest that deterministic, including chaotic, slow oscillations that characterize the intermittent control strategy, together with the small hemodynamic perturbation, could be a possible mechanism for generating the postural sway.  相似文献   

12.
We consider the dynamics of a model toggle switch abstracted from the genetic interactions operative in a fungal stress response circuit. The switch transduces an external signal and propagates it forward by mediating the transport between compartments of two interacting gene products. The transport between compartments is assumed to be related to the degree of association between the interacting proteins, a fact for which there exists a wealth of biological evidence. The ubiquity and modularity of this cellular control mechanism warrants a detailed study of the dynamics entailed by various modelling assumptions. Specifically, we consider a general gate model in which both of the associating proteins are freely transportable between compartments. A more restrictive, but biologically supported model, is considered in which only one of the two proteins undergoes transport. Under the strong assumption that the disassociation of the interacting proteins is unidirectional we show that the qualitative dynamics of the two models are similar; that is they both converge to unique periodic orbits. From a biophysical perspective the assumption of unidirectional dissociation is unrealistic. We show that the same result holds for the more restrictive model when one weakens the assumption of unidirectional binding or disassociation. We speculate that this is not true for the more general model. This difference in dynamics may have important biological implications and certainly points to promising avenues of research.  相似文献   

13.
ABSTRACT: BACKGROUND: The invasion-metastasis cascade of cancer involves a process of parallel progression. A biological interface (module) in which cells is linked with ECM (extracellular matrix) by CAMs (cell adhesion molecules) has been proposed as a tool for tracing cancer spatiotemporal dynamics. METHODS: A mathematical model was established to simulate cancer cell migration. Human uterine leiomyoma specimens, in vitro cell migration assay, quantitative real-time PCR, western blotting, dynamic viscosity, and an in vivo C57BL6 mouse model were used to verify the predictive findings of our model. RESULTS: The return to origin probability (RTOP) and its related CAM expression ratio in tumors gradually decreased with increased tumor size, and approached the 3D Polya constant (0.340537) in a periodic structure. The biphasic pattern of cancer cell migration revealed that cancer cells initially grew together and subsequently began spreading. A higher viscosity of fillers applied to the cancer surface was associated with a significantly greater inhibitory effect on cancer migration, in accordance with the Stokes-Einstein equation. CONCLUSION: The positional probability and cell-CAM-ECM interface (module) in the fractal framework helped us decipher cancer spatiotemporal dynamics; in addition we modeled the methods of cancer control by manipulating the microenvironment plasticity or inhibiting the CAM expression to the Polya constant.  相似文献   

14.
A mathematical model of the spatio-temporal dynamics of a two host, two parasitoid system is presented. There is a coupling of the four species through parasitism of both hosts by one of the parasitoids. The model comprises a system of four reaction-diffusion equations. The underlying system of ordinary differential equations, modelling the host-parasitoid population dynamics, has a unique positive steady state and is shown to be capable of undergoing Hopf bifurcations, leading to limit cycle kinetics which give rise to oscillatory temporal dynamics. The stability of the positive steady state has a fundamental impact on the spatio-temporal dynamics: stable travelling waves of parasitoid invasion exhibit increasingly irregular periodic travelling wave behaviour when key parameter values are increased beyond their Hopf bifurcation point. These irregular periodic travelling waves give rise to heterogeneous spatio-temporal patterns of host and parasitoid abundance. The generation of heterogeneous patterns has ecological implications and the concepts of temporary host refuge and niche formation are considered.  相似文献   

15.
An individual-based model forDrosophila is formulated, based on competition amongst larvae consuming the same batch of food. The predictions of the model are supported by data for single speciesDrosophila populations reared in the laboratory. The model is used to build a simple discrete model for the dynamics ofDrosophila populations that are kept over a number of generations. The dynamics of a single species is shown to give either a stable equilibrium or fluctuations which can be periodic or chaotic. When the dynamics of a species in the absence of the other is periodic or chaotic, we found coexistence or two alternative states, on neither of which the species can coexist.  相似文献   

16.
This paper proposes a system of integro-difference equations to model the spread of Carcinus maenas, commonly called the European green crab, that causes severe damage to coastal ecosystems. A model with juvenile and adult classes is first studied. Here, standard theory of monotone operators for integro-difference equations can be applied and yields explicit formulas for the asymptotic spreading speeds of the juvenile and adult crabs. A second model including an infected class is considered by introducing a castrating parasite Sacculina carcini as a biological control agent. The dynamics are complicated and simulations reveal the occurrence of periodic solutions and stacked fronts. In this case, only conjectures can be made for the asymptotic spreading speeds because of the lack of mathematical theory for non-monotone operators. This paper also emphasizes the need for mathematical studies of non-monotone operators in heterogeneous environments and the existence of stacked front solutions in biological invasion models.  相似文献   

17.
A class of ordinary or integrodifferential equations describing predator-prey dynamics is considered under the assumption that the coefficients are periodic functions of time. This class is characterized by the logistic behaviour of the prey in the absence of predators and it includes the Leslie model. We show that there exists a periodic solution provided that the average of the predator's intrinsic rate of increase is greater than a critical value. We use well-known results in bifurcation theory for nonlinear eigenvalue problems, as well as an extension to the case of non-globally defined operators of some recent results on the global nature of branches of solutions.  相似文献   

18.
The dynamics of a phytoplankton population growing in a chemostat under a periodic supply of nutrients is investigated with the model proposed by Droop. This model differs from the well-known Monod equations by incorporating nutrient storage by the cells. In spite of its nonlinearity and the time delays introduced by an internal nutrient pool, the model predicts a simple response to a periodic nutrient supply. The population is shown to oscillate with the same frequency as the forcing. To prove the existence of a periodic solution local and global bifurcation results are used. This work establishes a basis on which to evaluate experimental data against the model as a representation of the nutrient-phytoplankton interaction when nutrients fluctuate.  相似文献   

19.
No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard–Bishop–Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats.  相似文献   

20.
The previously established zonal character of the prevalence of viral hepatitis A in the Ukraine is a stable epidemiological regularity observed for more than 30 years (1952-1985). Zonal differences in the dynamics of the epidemic process of viral hepatitis A were established. These differences became particularly hepatitis manifest in the years of periodic rises in the morbidity rate which is also irregular within zonal and regional boundaries. The main typological variants of the dynamics of the epidemic process ("urban" and "rural") were defined. Typological approach appears to be useful in the provision of information necessary for the proper functioning of epidemiological surveillance and for taking measures aimed at epidemics control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号