首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
p53 has a direct apoptogenic role at the mitochondria   总被引:22,自引:0,他引:22  
  相似文献   

3.
Non-steroidal anti-inflammatory drugs are well known to induce apoptosis of cancer cells independent of their ability to inhibit cyclooxygenase-2, but the molecular mechanism for this effect has not yet been fully elucidated. The purpose of this study was to elucidate the potential signaling components underlying sulindac-induced apoptosis in human multiple myeloma (MM) cells. We found that sulindac induces apoptosis by promoting ROS generation, accompanied by opening of mitochondrial permeability transition pores, release of cytochrome c and apoptosis inducing factor from mitochondria, followed by caspase activation. Bcl-2 cleavage and down-regulation of the inhibitor of apoptosis proteins (IAPs) family including cIAP-1/2, XIAP, and survivin, occurred downstream of ROS production during sulindac-induced apoptosis. Forced expression of survivin and Bcl-2 blocked sulindac-induced apoptosis. Most importantly, sulindac-derived ROS activated p38 mitogen-activated protein kinase and p53. SB203580, a p38 mitogen-activated protein kinase inhibitor, and RNA inhibition of p53 inhibited the sulindac-induced apoptosis. Furthermore, p53, Bax, and Bak accumulated in mitochondria during sulindac-induced apoptosis. All of these events were significantly suppressed by SB203580. Our results demonstrate a novel mechanism of sulindac-induced apoptosis in human MM cells, namely, accumulation of p53, Bax, and Bak in mitochondria mediated by p38 MAPK activation downstream of ROS production.  相似文献   

4.
5.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

6.
7.
PUMA, a novel proapoptotic gene, is induced by p53.   总被引:27,自引:0,他引:27  
  相似文献   

8.
9.
The mechanisms of injury‐induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve‐spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7–14 days postlesion. This motor neuron apoptosis is blocked in bax?/? and p53?/? mice. Single‐cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single‐strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4–5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase‐3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase‐3. We conclude that adult motor neuron death after nerve avulsion is DNA damage‐induced, p53‐ and Bax‐dependent apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 181–197, 2002; DOI 10.1002/neu.10026  相似文献   

10.
TP53基因(编码p53蛋白)作为一个重要的抑瘤基因,通过调控一系列信号转导通路广泛参与了多种恶性肿瘤的发生发展,一直是肿瘤分子生物学研究领域的热点.最近的研究发现,microRNAs(miRNAs)参与了TP53的信号通路,它们之间存在着复杂的调控网络.一方面,p53通过调控一些miRNAs的转录及转录后成熟,促进细胞周期阻滞、诱导细胞凋亡和衰老,抑制肿瘤发生.另一方面,许多miRNAs,如miR-25、miR-30d、miR-125b和miR-504等可直接调控p53的表达与活性,参与TP53信号通路的调节,还有一些miRNAs则通过调节p53上下游基因,发挥重要的生物学功能.其中,最具有代表性的是miR-34家族,它们受p53直接调控并参与TP53信号通路,通过靶向抑制多个TP53信号通路关键分子的表达,发挥抑瘤作用.此外,它们还可以通过抑制沉默信息调节子,增强p53的活性,反馈调节TP53信号通路.miRNAs与TP53之间调控网络的研究,是对TP53抑瘤机制的重要补充.  相似文献   

11.
p53-dependent apoptosis contributes to the side effects of cancer treatment, and genetic or pharmacological inhibition of p53 function can increase normal tissue resistance to genotoxic stress. It has recently been shown that p53 can induce apoptosis through a mechanism that does not depend on transactivation but instead involves translocation of p53 to mitochondria. To determine the impact of this p53 activity on normal tissue radiosensitivity, we isolated a small molecule named pifithrin-mu (PFTmu, 1) that inhibits p53 binding to mitochondria by reducing its affinity to antiapoptotic proteins Bcl-xL and Bcl-2 but has no effect on p53-dependent transactivation. PFTmu has a high specificity for p53 and does not protect cells from apoptosis induced by overexpression of proapoptotic protein Bax or by treatment with dexamethasone (2). PFTmu rescues primary mouse thymocytes from p53-mediated apoptosis caused by radiation and protects mice from doses of radiation that cause lethal hematopoietic syndrome. These results indicate that selective inhibition of the mitochondrial branch of the p53 pathway is sufficient for radioprotection in vivo.  相似文献   

12.
13.
14.
15.
The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1, interacts with the proliferating cell nuclear antigen (PCNA) in a UV-inducible manner. ING1 also interacts with members of the 14-3-3 family leading to its cytoplasmic relocalization. Overexpression of ING1 enhances expression of the Bax gene and was reported to alter mitochondrial membrane potential in a p53-dependent manner. Here we show that ING1 translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation to the mitochondria after UV treatment. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX, and colocalizes with BAX in a UV-inducible manner. Ectopic expression of a mitochondria-targeted ING1 construct is more proficient in inducing apoptosis than the wild type ING1 protein. Bioinformatic analysis of the yeast interactome indicates that yeast ING proteins interact with 64 mitochondrial proteins. Also, sequence analysis of ING1 reveals the presence of a BH3-like domain. These data suggest a model in which stress-induced cytoplasmic relocalization of ING1 by 14-3-3 induces ING1-BAX interaction to promote mitochondrial membrane permeability and represent a paradigm shift in our understanding of ING1 function in the cytoplasm and its contribution to apoptosis.  相似文献   

16.
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.  相似文献   

17.
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase‐independent, mitochondrion‐related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG‐based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild‐type p53‐containing mouse macrophages and p53‐deficient human macrophages. Most leptospire‐infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1‐phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53‐dependent p21Cip1/WAF1 and pro‐apoptotic Bcl‐2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire‐induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage‐dependent p53‐Bax/Noxa/Puma‐AIF/EndoG signalling mediates the leptospire‐induced cell cycle arrest and caspase‐independent apoptosis of macrophages.  相似文献   

18.
19.
20.
p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-μ, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-μ binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号