首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Dipeptidyl peptidase-IV (DPP-IV) is a protease responsible for the degradation of the incretin hormone. A number of DPP-IV inhibitors have been approved for use in the treatment of type 2 diabetes. While these inhibitors are effective for this treatment, methods for the prevention of this disease are also required as diabetes patient numbers are currently increasing rapidly worldwide. We screened the DPP-IV inhibitory activities of edible plant extracts with the intention of using these extracts in a functional food supplement for the prevention of diabetes. Rose (Rosa gallica) bud extract powder was a promising material with high inhibitory activity. In this study, seven ellagitannins were isolated as active compounds through activity-guided fractionations, and their DPP-IV inhibitory activities were measured. Among them, rugosin A and B showed the highest inhibitory activities and rugosin B was shown as the major contributing compound in rose bud extract powder.  相似文献   

2.
Histamine is an important chemical mediator for a wide variety of physiological reactions. l-Histidine decarboxylase (HDC) is the primary enzyme responsible for histamine synthesis and produces histamine from histidine in a one-step reaction. In this study, we determined the crystal structure of human HDC (hHDC) complexed with the inhibitor histidine methyl ester. This structure shows the detailed features of the pyridoxal-5'-phosphate inhibitor adduct (external aldimine) at the active site of HDC. Moreover, a comparison of the structures of hHDC and aromatic l-amino acid (l-DOPA) decarboxylase showed that Ser-354 was a key residue for substrate specificity. The S354G mutation at the active site enlarged the size of the hHDC substrate-binding pocket and resulted in a decreased affinity for histidine, but an acquired ability to bind and act on l-DOPA as a substrate. These data provide insight into the molecular basis of substrate recognition among the group II pyridoxal-5'-phosphate-dependent decarboxylases.  相似文献   

3.
4.
Calcium entry is a component of the processes regulating the proliferative phenotype of some types of cancer. In non-excitable cells, capacitative calcium entry (CCE) and non-capacitative calcium entry (NCCE) are thought to be the main pathways of Ca2+ influx into cells. Thus, blocking calcium entry may prevent normal and pathological cell proliferation and there is evidence to suggest that molecules blocking calcium entry also have antiproliferative properties. Carboxyamidotriazole (CAI), a novel inhibitor of the non-voltage-dependent calcium entry has been shown to have such properties in model systems in vitro and in vivo. We used Hep G2 and Huh-7 human hepatoma cells to investigate the effects of calcium entry blockers on cell proliferation. CAI (10 microM) and 2-APB (20 microM) completely blocked CCE in thapsigargin-treated Huh-7, and CAI and 2-APB inhibited cell proliferation with IC50 of 4.5 and 43 microM, respectively. The plateau phase of the [Ca2+]i increases triggered by 10% FCS were abolished in the absence of external Ca2+ and in the presence of CAI or 2-APB. We, therefore, suggest that CCE is the main pathway involved in regulation of the processes leading to cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号