首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because cetaceans are difficult to study in the wild, little is known about how they use their sounds in their natural environment. Only the recent development of passive acoustic localization systems has enabled observations of the communication behaviour of individuals for correlation with their surface behaviour. Using such a system, I show that bottlenose dolphins in the Moray Firth, Scotland, produce low-frequency bray calls which are clearly correlated with feeding on salmonids. The production of these calls is followed by fast approaches by conspecifics in the area. In animals which use sound as a foraging tool, it is difficult to distinguish between food calls which have evolved because of their role in attracting conspecifics, and food manipulation or searching calls which may attract conspecifics as a by-product. However, the low-frequency structure of the bottlenose dolphin bray suggests that it evolved because of a role in manipulating prey rather than in attracting conspecifics. This conclusion suggests that dolphins exploit the perceptual systems of their prey to facilitate capture.  相似文献   

2.
Biphonation, the simultaneous production of two sounds by a single animal, is found in the vocalizations of a range of mammalian species. Its prevalence suggests it plays an important role in acoustic communication. Concurrent vocal and behavioural recordings were made of Atlantic spotted dolphins (Stenella frontalis) off Bimini, The Bahamas. The occurrence of two types of biphonal signals is reported: burst-pulse whistles with combined tonal and burst-pulse elements, and bitonal whistles. Biphonal whistles are rarely described in reports of dolphin acoustic repertoires, but were common in these dolphins: of all whistles analysed (n = 1211), 26.84% were burst-pulse whistles and 4.71% were bitonal whistles. A subset of whistles (n = 397) were attributed to dolphins of specific age classes, and used to compare prevalence of biphonation across age. Biphonation occurred in 61.54% of sexually mature and 48.32% of sexually immature dolphins’ whistles. Sexually immature dolphins emitted more burst-pulse whistles than older dolphins: 44.13% of sexually immature dolphins’ whistles were burst-pulse whistles, while 15.38% of adult whistles were burst-pulse whistles. Bitonal whistle production was more prevalent in sexually mature dolphins: 41.03% of adult whistles were bitonal, while only 4.19% of sexually immature dolphins’ whistles were bitonal. The prevalence of a biphonal component in specific repeated, stereotyped whistle contours suggests that these acoustic features could be important components of contact calls, or signature whistles. The biphonal components of spotted dolphin whistles may serve to convey additional information as to identity, age or other factors to conspecifics.  相似文献   

3.
Animal communication signals are diverse. The types of sounds that animals produce, and the way that information is encoded in those sounds, not only varies between species but can also vary geographically within a species. Therefore, an understanding of the vocal repertoire at the population level is important for providing insight into regional differences in vocal communication signals. One species whose vocal repertoire has received considerable attention is the bottlenose dolphin. This species is well known for its use of individually distinctive identity signals, known as signature whistles. Bottlenose dolphins use their signature whistles to broadcast their identity and to maintain contact with social companions. Signature whistles are not innate, but are learnt signals that develop within the first few months of an animal’s life. It is therefore unsurprising that studies which have characterized signature whistles in wild populations of bottlenose dolphins have provided evidence of geographic variation in signature whistle structure. Here, we describe the occurrence of signature whistles in a previously unexplored wild population of bottlenose dolphins in Cardigan Bay, Wales. We present the first occurrence of a signature whistle with an ultrasonic fundamental frequency component (>30 kHz), a frequency band that was not thought to be utilized by this species for whistle communication. We also describe the occurrence of an ultrasonic non-signature whistle. Our findings highlight the importance of conducting regional studies in order to fully quantify a species’ vocal repertoire, and call into question the efficacy of those studies that use restricted sampling rates.  相似文献   

4.
Acoustic communication is a taxonomically widespread phenomenon, crucial for social animals. We evaluate social sounds from bottlenose dolphins (Tursiops truncatus) of Laguna, southern Brazil, whose social structure is organized around a cooperative foraging tactic with artisanal fishermen. This tactic involves stereotyped and coordinated behaviour by dolphins and fishermen and is performed by a subset of the dolphin population, splitting it into two distinct social communities. We compared the acoustic parameters and type of whistles emitted by dolphins of the “non‐cooperative” and “cooperative” communities, both during their interactions with fishermen and in times where dolphins were engaged in other types of foraging. Our findings show how dolphins’ social sounds differ between foraging tactics and social communities. The frequencies of six whistle types (ascending, descending, concave, convex, multiple, flat) were significantly dependent on tactics and communities. Ascending whistles were more common than expected during foraging without fishermen, and among dolphins of the non‐cooperative community. Whistle acoustic parameters (duration, number of inclination changes and inflection points, and initial, final, maximum, minimum frequencies) also varied between social communities. In general, whistles emitted by cooperative dolphins, mainly when not interacting with fishermen, tended to be shorter, had higher frequency and more inflections than those emitted by non‐cooperative dolphins. These results suggest that different whistles may convey specific information among dolphins related to foraging, which we hypothesize promote social cohesion among members of the same social community. These differences in acoustic repertoires add a new dimension of complexity to this unique human–animal interaction.  相似文献   

5.

We report the first recorded interactions between bottlenose dolphin (Tursiops truncatus) and Commerson’s dolphins (Cephalorhynchus commersonii). The diurnal behavioral patterns of bottlenose dolphins in Bahía Engaño, Argentina, were similar to those described for other coastal populations around the world. The majority of the feeding bouts were recorded near the mouth the Chubut River. When not feeding near the river, bottlenose dolphins generally swam along the coast, and interactions with Commerson’s dolphins were recorded very close to the shore on two occasions during a 3-year period. In the first event, both species were feeding on a fish school. The second interaction was aggressive in nature, involving one juvenile and three adult bottlenose dolphins with several Commerson’s dolphins. Two of the adult bottlenose dolphins attacked the Commerson’s dolphins. We propose that the observed behavior represented defense of the juvenile bottlenose dolphin.

  相似文献   

6.
Bottlenose dolphins (Tursiops truncatus) produce individually distinctive vocalizations—referred to as “signature whistles”—that are thought to function as an individual and conspecific recognition system for maintenance of consistent contact between individuals. Observations and playback experiments were conducted at aquariums to study these whistle–vocal exchanges in bottlenose dolphins. Temporal patterns of vocalization were examined by analyzing the intercall intervals between two consecutive whistles. When a second individual produced a call that was different from the first individual’s vocalization, most of these calls were shorter than 1 s. However, when two consecutive calls were produced by the same individual, the second call rarely occurred within 1 s of the first. These results suggest that a second whistle may be produced by a different caller in response to the first whistle; however, in the case of an absence of a response, the first caller is likely to give further whistles. The results of this acoustic analysis show that the dolphins used in this study mostly used signature whistles during the recorded vocal exchanges.  相似文献   

7.
Whistles are key elements in the acoustic repertoire of bottlenose dolphins. In this species, the frequency contours of whistles are used as individual signatures. Assessing the long-lasting stability of such stereotyped signals, and the abundant production of non-stereotyped whistles in the wild, is relevant to a more complete understanding of their biological function. Additionally, studying the effects of group size and activity patterns on whistle emission rate may provide insights into the use of these calls. In this study, we document the decades-long occurrence of whistles with stereotyped frequency contours in a population of wild bottlenose dolphins, resident in the region of the Sado estuary, Portugal. Confirmed stereotypy throughout more than 20 years, and positive identification using the signature identification (SIGID) criteria, suggests that the identified stereotyped whistles are in fact signature whistles. The potential roles of non-stereotyped whistles, which represent 68 % of all whistles recorded, are still unclear and should be further investigated. Emission rates were significantly higher during food-related events. Finally, our data show a comparatively high overall whistle production for this population, and no positive correlation between group size and emission rates, suggesting social or environmental restriction mechanisms in vocal production.  相似文献   

8.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

9.
The prevailing view among researchers of dolphin communication is that bottlenose dolphins possess an individualized whistle contour; known as the ‘signature whistle’, it accounts for 74–95 % of a dolphin's whistle repertoire and functions to signal the individual identity of the whistler. This study used a new quantitative technique, termed the contour similarity technique (CS technique), and reports on the quantitative comparison of whistles from the individuals of three different social groups of bottlenose dolphins in socially interactive contexts. Results suggest that captive adult dolphins share several different whistle types including one predominant whistle type shared by all individuals across three different social groups. These analyses suggest a different interpretation of the dolphin whistle repertoire than has previously been proposed by proponents of the signature whistle hypothesis. In addition, results from our study support the results of early studies, published before the advent of the signature whistle hypothesis, in which investigators reported a large whistle repertoire within socially interactive captive and free-ranging groups and a predominant whistle type similar to that found in our study. Our results, combined with the results from earlier studies of dolphin vocal behaviour, suggest that the signature whistle hypothesis is incomplete and that dolphin whistle repertoires need to be analysed with respect to behavioural context and social relationships. In addition, these results suggest that contour discrimination and other acoustic features of whistles need to be tested in perception and categorization experiments.  相似文献   

10.
The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild.  相似文献   

11.
Tonal vocalizations or whistles produced by many species of delphinids range from simple tones to complex frequency contours. Whistle structure varies in duration, frequency, and composition between delphinid species, as well as between populations and individuals. Categorization of whistles may be improved by decomposition of complex calls into simpler subunits, much like the use of phonemes in classification of human speech. We identify a potential whistle decomposition scheme and normalization process to facilitate comparison of whistle subunits derived from tonal vocalizations of bottlenose dolphins (Tursiops truncatus), spinner dolphins (Stenella longirostris), and short‐beaked common dolphins (Delphinus delphis). Network analysis is then used to compare subunits within the vocal corpus of each species. By processing whistles through a series of steps including segmentation, normalization, and dynamic time warping, we are able to automatically cluster selected subunits by shape, regardless of differences in absolute frequency or moderate differences in duration. Using the clustered subunits, we demonstrate a preliminary species classification scheme based on rates of subunit occurrence in vocal repertoires. This provides a potential mechanism for comparing the structure of complex vocalizations within and between species.  相似文献   

12.
Common bottlenose dolphins (Tursiops truncatus) use complex acoustic behaviours for communication, group cohesion and foraging. Ambient noise from natural and anthropogenic sources has implications for the acoustic behaviour of dolphins, and research shows that average ambient noise levels alter dolphin acoustic behaviour. However, when background noise levels are highly variable, the relationships between noise and acoustic behaviour over short time periods are likely important. This study investigates whether bottlenose dolphins altered the temporal and spectral qualities of their whistles in relation to the ambient noise present at the time the whistles were produced. Dolphin groups were recorded in Tampa Bay (western Florida) between 2008 and 2015. Six whistle parameters were analysed in spectrogram software (minimum frequency, maximum frequency, bandwidth, peak frequency, duration and number of inflection points) and ambient noise levels were calculated immediately prior to each whistle. Linear regression analysis indicated that the minimum, maximum and peak frequencies of whistles had significant positive relationships with the ambient noise levels present at the time of the whistles. These models suggested that for each 1 dB increase in ambient noise, minimum frequency increased by 121 Hz, maximum frequency increased by 108 Hz and peak frequency increased by between 122 and 144 Hz. As ambient noise is typically low frequency, this suggests that bottlenose dolphins increased whistle frequency in response to real-time noise levels to avoid masking. Future research to determine the fitness consequences of noise-induced changes in the communication behaviour of dolphins would be an important contribution to conservation efforts.  相似文献   

13.
Evoked potential audiograms were measured in 13 Pacific bottlenose dolphins (Tursiops truncatus gilli) to determine the variability in hearing sensitivity and range of hearing. The auditory evoked potential system used a transducer embedded in a suction cup to deliver sinusoidal amplitude modulated tones to each dolphin through the pan region of the lower right jaw. Evoked potentials were recorded noninvasively using surface electrodes, and hearing thresholds were estimated by tracking the amplitude of the envelope following response, an evoked potential that is phase‐locked to the stimulus modulation rate. Frequencies tested ranged from 10 to 180 kHz in each animal. Variability in the range of hearing and age‐related reductions in hearing sensitivity and range of hearing were consistent with those observed in Atlantic bottlenose dolphins. Comparison of audiograms to a captive population of Atlantic bottlenose dolphins demonstrated that the Pacific bottlenose dolphins tested in this study had significantly lower thresholds at frequencies of 40 and 60–115 kHz. Differences in thresholds between the groups are unlikely to be due to methodological factors.  相似文献   

14.
Glomerular filtration rate (GFR) is a direct measurement of renal function. Although clearance tests using 24‐h urine collection or blood sample series are gold standards for measuring GFR, serum‐based prediction of GFR based upon the Modification of Diet in Renal Disease (MDRD) Study equation is acceptable for routine use in human adults. The purpose of our study was to assess the ability for a modified MDRD Study equation to predict expected changes in GFR in bottlenose dolphins (Tursiops truncatus) using a healthy dolphin population represented by 1,103 routine serum samples collected from 50 dolphins of all age groups, years 1998–2005. Predicted GFR was also calculated from serum collected from a 32‐yr‐old male dolphin with end‐stage renal disease. The dolphin‐adjusted MDRD equation predicted GFR changes in our population that paralleled what has previously been reported in other mammals, including decreasing predicted GFR with age (P < 0.01), higher predicted GFR in dolphins that had recently eaten (P < 0.01), and rapidly decreasing predicted GFR in the animal with end‐stage renal disease. We conclude that a serum‐based GFR prediction equation may be a feasible means of detecting and tracking renal function in bottlenose dolphins.  相似文献   

15.
We present a new sound type recorded from bottlenose dolphins, Tursiops truncatus , in eastern Australian waters: low-frequency, narrow-band (LFN) harmonic sounds (defined as less than 2 kHz). Most of these sounds were of frequencies less than 1 kHz and were recorded commonly from socializing dolphins. These sounds differ significantly from narrow-band whistles, which are higher in frequency and longer in duration. The absence of these sounds in most studies of the acoustic behavior of bottlenose dolphins may reflect geographic differences in repertoires or result from insufficient sampling. Alternatively, these sounds may have been ignored where the focus of research was on other sound types.  相似文献   

16.
Phylogenetic placement of bottlenose dolphins from Zanzibar, East Africa and putative population differentiation between animals found off southern and northern Zanzibar were examined using variation in mtDNA control region sequences. Samples (n= 45) from animals bycaught in fishing gear and skin biopsies collected during boat surveys were compared to published sequences (n= 173) of Indo‐Pacific bottlenose dolphin, Tursiops aduncus, from southeast Australian waters, Chinese/Indonesian waters, and South African waters (which recently was proposed as a new species) and to published sequences of common bottlenose dolphin, Tursiops truncatus. Bayesian and maximum parsimony analyses indicated a close relationship between Zanzibar and South African haplotypes, which are differentiated from both Chinese/Indonesian and Australian T. aduncus haplotypes. Our results suggest that the dolphins found off Zanzibar should be classified as T. aduncus alongside the South African animals. Further, analyses of genetic differentiation showed significant separation between the T. aduncus found off northern and southern Zanzibar despite the relatively short distance (approximately 80 km) between these areas. Much less differentiation was found between southern Zanzibar and South Africa, suggesting a more recent common evolutionary history for these populations than for the northern and southern Zanzibar populations.  相似文献   

17.
The biological and genetic structure of common bottlenose dolphins (Tursiops truncatus) that migrate seasonally near Japan remains largely unknown. We investigated the genetic and family structure in a group of 165 common bottlenose dolphins caught off the coast of Japan using mitochondrial DNA (mtDNA) and 20 microsatellite DNA markers. Phylogenetic analysis of the mtDNA control region sequences suggested that the dolphins were related more closely to oceanic types from Chinese waters than other geographic regions. The information on sex, sexual maturation and age together with the genetic markers revealed a strong likelihood for 37 familial relationships related mostly to maternity and an under‐representation of juvenile female offspring. The maternal dolphins had a similar offspring‐birth interval as the coastal types from North Atlantic Ocean, but a slightly younger first‐progeny age. The sex bias in the captured group was particularly marked towards an over‐representation of males among the young and immature dolphins, whereas the mature adults had an equal number of males and females. These results should be useful for future comparative biological, genetic and evolutionary investigations of bottlenose dolphins from the North Pacific Ocean with those from other regions.  相似文献   

18.
Boat-based photoidentification surveys of bottlenose dolphins (Tursiops truncatus) were conducted from 1982 to 1989 in three discrete coastal study areas within the Southern California Bight: (1) Santa Barbara, California; (2) Orange County, California; (3) Ensenada, Baja California, Mexico. A total of 207 recognizable dolphins were identified in these three “secondary” study areas. These individuals were compared to 404 dolphins identified from 1981 to 1989 in our “primary” study area, San Diego, California, to examine the coastal movement patterns of bottlenose dolphins within the Southern California Bight. A high proportion of dolphins photographed in Santa Barbara (88%), Orange County (92%), and Ensenada (88%) were also photographed in San Diego. Fifty-eight percent (n= 120) of these 207 dolphins exhibited back-and-forth movements between study areas, with no evidence of site fidelity to any particular region. Minimum range estimates were 50 and 470 km. Minimum travel-speed estimates were 11-47 km/d, and all dolphin schools sighted during the study were within 1 km of the shore. These data suggest that bottlenose dolphins within the Southern California Bight are highly mobile within a relatively narrow coastal zone. Home-range dimensions and movement patterns for many vettebrate species are influenced, in part, by variation in food resources. The unique range characteristics documented during this study may reflect the highly dynamic nature of this coastal ecosystem and the associated patchy distribution of food resources available to these bottlenose dolphins.  相似文献   

19.
20.
Stress can increase an organism’s susceptibility to disease. Thus, managing stress and its causes are important elements of captive care. Social factors such as changes in group dynamics, competition over resources, and unstable dominance hierarchies are potential stressors for highly social animals such as bottlenose dolphins (Tursiops sp). We present three case studies of mortality and illness in captive bottlenose dolphins and suggest that stress, resulting from social instability and ensuing aggressive interactions, is likely to have played a role in these health consequences. Stress is implicated by blood profiles, loss of appetite, and gastric ulcers, and social problems and instability are evident in the quantitative analysis of individual activity levels and association patterns. This is a unique study on marine mammals in that it demonstrates a correlation between quantitative behavioral indices and physiological measures of stress and health. Recommendations are made for the management of captive dolphins including regular quantitative assessment of behavior and associations and maintenance of appropriate groupings of age and sex classes. Behavioral records can be an important early indicator of health problems and may also serve as a useful tool for recognizing potentially stressful social changes and circumstances. Zoo Biol 21:5–26, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号