首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
AK Jana  N Sengupta 《Biophysical journal》2012,102(8):1889-1896
Though nanomaterials such as carbon nanotubes have gained recent attention in biology and medicine, there are few studies at the single-molecule level that explore their interactions with disease-causing proteins. Using atomistic molecular-dynamics simulations, we have investigated the interactions of the monomeric Aβ(1-42) peptide with a single-walled carbon nanotube of small diameter. Starting with peptide-nanotube complexes that delineate the interactions of different segments of the peptide, we find rapid convergence in the peptide's adsorption behavior on the nanotube surface, manifested in its arrested movement, the convergence of peptide-nanotube contact areas and approach distances, and in increased peptide wrapping around the nanotube. In systems where the N-terminal domain is initially distal from nanotube, the adsorption phenomena are initiated by interactions arising from the central hydrophobic core, and precipitated by those arising from the N-terminal residues. Our simulations and free energy calculations together demonstrate that the presence of the nanotube increases the energetic favorability of the open state. We note that the observation of peptide localization could be leveraged for site-specific drug delivery, while the decreased propensity of collapse appears promising for altering kinetics of the peptide's self-assembly.  相似文献   

2.
The second most prevalent neurodegenerative disease, Parkinson's disease (PD), is caused by the accumulation and deposition of fibrillar aggregates of the α-Syn into the Lewy bodies. To create a potent pharmacological candidate to destabilize the preformed α-Syn fibril, it is important to understand the precise molecular mechanism underlying the destabilization of the α-Syn fibril. Through molecular dynamics simulations and experiments, we have examined the molecular mechanisms causing the destabilization and suppression of a newly discovered α-Syn fibril with a Greek-key-like shape and an aggregation prone state (APS) of α-Syn in the presence and absence of various Flvs. According to MD simulation and experimental evidence, morin, quercetin, and myricetin are the Flvs, most capable of destabilizing the fibrils and converting them into amorphous aggregates. Compared to galangin and kaempferol, they have more hydroxyl groups and form more hydrogen bonds with fibrils.The processes by which morin and myricetin prevent new fibril production from APS and destabilize the fibrils are different. According to linear interaction energy analysis, van der Waals interaction predominates with morin, and electrostatic interaction dominates with myricetin. Our MD simulation and experimental findings provide mechanistic insights into how Flvs destabilize α-Syn fibrils and change their morphology, opening the door to developing structure-based drugs for treating Parkinson's disease.  相似文献   

3.
Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], α-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native β-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-β amyloid core of aCgn aggregates and that at least ~50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended β-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.  相似文献   

4.
The lipid second messenger diacylglycerol (DAG) is known for its involvement in many types of cellular signaling, especially as an endogenous agonist for protein kinase C (PKC). Evidence has emerged that the degree of saturation of the DAG molecules can affect PKC activation. DAG molecules with different acyl chain saturation have not only been observed to induce varying extents of PKC activation, but also to express selectivity towards different PKC isozymes. Both qualities are important for precise therapeutic activation of PKC; understanding DAG behavior at the molecular level in different environments has much potential in the development of drugs to target PKC. We used molecular dynamics simulations to study the behavior of two different unsaturated DAG species in lipid environments with varying degrees of unsaturation. We focus on phosphatidylethanolamine (PE) instead of phosphatidylcholine (PC) to more accurately model the relevant biomembranes. The effect of cholesterol (CHOL) on these systems was also explored. We found that both high level of unsaturation in the acyl chains of the DAG species and presence of CHOL in the surrounding membrane increase DAG molecule availability at the lipid–water interface. This can partially explain the previously observed differences in PKC activation strength and specificity, the complete mechanism is, however, likely to be more complex. Our simulations coupled with the current understanding of lipids highlight the need for more simulations of biologically accurate lipid environments in order to determine the correct correlations between molecular mechanisms and biological behavior when studying PKC activation.  相似文献   

5.
Numerous steroids are essential plant, animal, and human hormones. The medical and industrial applications of these hormones require the identification of new synthetic routes, including biotransformations. The metabolic fate of a steroid can be complicated; it may be transformed into a variety of substituted derivatives. This may be because a steroid molecule can adopt several possible orientations in the binding pocket of a receptor or an enzyme. The present study, based on docking and molecular dynamics, shows that it is indeed possible for a steroid molecule to bind to a receptor binding site in two or more orientations (normal, head-to-tail reversed, upside down). Three steroids were considered: progesterone, dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. Two proteins were employed as hosts: the human mineralocorticoid receptor and a bacterial Baeyer–Villiger monooxygenase. When the steroids were in nonstandard orientations, the estimated binding strength was found to be only moderately diminished and the network of hydrogen bonds between the steroid and the host was preserved.  相似文献   

6.
The role of water in determining the structure and stability of biomacromolecules has been well studied. In this work, molecular dynamics simulations have been applied to investigate the effect of surface hydrophobicity on the structure and dynamics of water confined between graphene surfaces. In order to evaluate this effect, we apply various attractive/repulsive water–graphene interaction potentials (hydrophobicity). The properties of confined water are studied by applying a purely repulsive interaction potential between water–graphene (modelled as a repulsive r?12 potential) and repulsive–attractive forces (modelled as an LJ(12-6) potential). Compared to the case of a purely repulsive graphene–water potential, the inclusion of repulsive–attractive forces leads to formation of sharp peaks for density and the number of hydrogen bonds. Also, it was found that repulsive–attractive graphene–water potential caused slower hydrogen bonds dynamics and restricted the diffusion coefficient of water. Consequently, it was found that hydrogen bond breakage and formation rate with the repulsive r?12 potential model, will increase compared to the corresponding water confined with the LJ(12-6) potential.  相似文献   

7.
The development of antimicrobial agents that target and selectively disrupt biofilms is a pressing issue since, so far, no antibiotics have been developed that achieve this effectively. Previous experimental work has found a promising set of antibacterial peptides: β2,2-amino acid derivatives, relatively small molecules with common structural elements composed of a polar head group and two non-polar hydrocarbon arms. In order to develop insight into possible mechanisms of action of these novel antibacterial agents, we have performed an in silico investigation of four leading β2,2-amino acid derivatives, interacting with models of both bacterial (target) and eukaryotic (host) membranes, using molecular dynamics simulation with a model with all-atom resolution. We found an unexpected result that could shed light on the mechanism of action of these antimicrobial agents: the molecules assume a conformation where one of the hydrophobic arms is directed downward into the membrane core while the other is directed upwards, out of the membrane and exposed above the position of the membrane headgroups; we dubbed this conformation the “can-can pose”. Intriguingly, the can-can pose was most closely linked to the choice of headgroup. Also, the compound previously found to be most effective against biofilms displayed the strongest extent of this behavior and, additionally, this behavior was more pronounced for this compound in the bacterial than in the eukaryotic membrane. We hypothesize that adopting the can-can pose could possibly disrupt the protective peptidoglycan macronet found on the exterior of the bacterial membrane.  相似文献   

8.
DHCR24 encodes 3β-hydroxysterol-Δ24-reductase (DHCR24) catalyzing the cholesterol synthesis from desmosterol using the flavin adenine dinucleotide (FAD) as a co-factor. It is generally accepted that U18666a inhibits the reductase activity of DHCR24, but the detailed mechanism remains elusive. To explore the mechanism of the inhibitory effect of U18666a on DHCR24, we performed molecular dynamics (MD) simulations of two complexes including complexes of DHCR24-FAD-desmosterol enzymatic reactive components with and without the inhibitor U18666a. We found that the U18666a bound into the hydrophobic package near the FAD package of DHCR24. Furthermore, binding free energy of DHCR24 and desmosterol without U18666a is ?54.86 kcal/mol, while the system with U18666a is ?62.23 kcal/mol, suggesting that the affinity of the substrate desmosterol to DHCR24 was increased in response to the U18666a. In addition, U18666a interacts with FAD by newly forming three hydrogen bonds with Lys292, Lys367, and Gly438 of DHCR24. Finally, secondary structural analysis data obtained from the surrounding hot spots showed that U18666a induced dramatic secondary structural changes around the key residues in the interaction of DHCR24, FAD, and desmosterol. Taken together, these results for the first time demonstrate at the molecular structure level that U18666a blocks DHCR24 activity through an allosteric inhibiting mechanism, which may provide new insight into the development of a new type of cholesterol-lowering drug targeting to block the activity of DHCR24.  相似文献   

9.
Endo-1,3-β-glucanase from Cellulosimicrobium cellulans is composed of a catalytic domain and a carbohydrate-binding module. We have determined the X-ray crystal structure of the catalytic domain at a high resolution of 1.66 Å. The overall fold is a sandwich-like β-jelly roll architecture like the enzymes in the glycoside hydrolase family 16. The substrate-binding cleft has a length and a width of ~ 28 and ~ 15 Å, respectively, which is thought to be capable of accommodating at least six glucopyranose units. Laminarihexaose was placed into the substrate-binding cleft, namely at the subsites + 2 to − 4 from the reducing end, and the complex structure was analyzed using molecular dynamics simulations (MD) and using a rotamer search of the pocket. During the MD simulations, the substrate fluctuated more than the enzyme, where the residues at the subsites toward the non-reducing end fluctuated more than those toward the reducing end. Little conformational change of the protein was observed for the subsites + 1 and + 2, indicating that the glucose's position could be tightly restricted inside the pocket. Substrate binding experiments using isothermal titration calorimetry showed that the binding affinity of laminaritriose was higher than that of laminaribiose and similar to those of other longer laminarioligosaccharides. Taken together, the substrates mainly bind to the subsites − 1 to − 3 with the highest affinity, while the part bound to the reducing end would be hydrolyzed.  相似文献   

10.
Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.  相似文献   

11.
12.
Water molecules play a critical role in stabilising the three-dimensional architecture, dynamics and function of biological macromolecules. Comparative analysis of structurally similar proteins has shown that there are water molecules conserved in the same relative positions and make similar hydrogen bonds with proteins in all crystal structures. These invariant water molecules are essential for the maintenance of the native structure of proteins. The present study explores the role of invariant water molecules to maintain the active site geometry of β-lactamase enzyme. Thirteen crystal structures of class-A β-lactamase from Staphylococcus aureus have been used in this study. Molecular dynamics simulations of the protein structures were performed in hydrated as well as in dehydrated conditions. The analysis showed that significant changes occur in the active site geometry due to dehydration. These changes can be attributed to the removal of water molecules at the active site.  相似文献   

13.
14.
Abishek Suresh  Andrew Hung 《Proteins》2019,87(11):992-1005
The α7 subtype of neuronal nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein that is vital to various neurological functions, including modulation of neurotransmitter release. A relatively high concentration of extracellular Ca2+ in the neuronal environment is likely to exert substantial structural and functional influence on nAChRs, which may affect their interactions with agonists and antagonists. In this work, we employed atomistic molecular dynamics (MD) simulations to examine the effects of elevated Ca2+ on the structure and dynamics of α7 nAChR embedded in a model phospholipid bilayer. Our results suggest that the presence of Ca2+ in the α7 nAChR environment results in closure of loop C-in the extracellular ligand-binding domain, a motion normally associated with agonist binding and receptor activation. Elevated Ca2+ also alters the conformation of key regions of the receptor, including the inter-helical loops, pore-lining helices and the “gate” residues, and causes partial channel opening in the absence of an agonist, leading to an attendant reduction in the free energy of Ca2+ permeation through the pore as elucidated by umbrella sampling simulations. Overall, the structural and permeability changes in α7 nAChR suggest that elevated Ca2+ induces a partially activated receptor state that is distinct from both the resting and the agonist-activated states. These results are consistent with the notion that divalent ions can serve as a potentiator of nAChRs, resulting in a higher rate of receptor activation (and subsequent desensitization) in the presence of agonists, with possible implications for diseases involving calcium dysregulation.  相似文献   

15.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13–26) with hydrogen bonds and ππ interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16–20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM–PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (?43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.  相似文献   

16.
A good understanding of the inhibition mechanism of enzymes exhibiting high levels of similarity is the first step to the discovery of new drugs with selective potential. Examples of such proteins include glycogen synthase kinase-3 (GSK-3β) and cyclin-dependent kinase 2 (CDK-2). This article reports the mechanism of such enzyme inhibition as analyzed by an indoline sulfamylophenyl derivative (CHEMBL410072). Previous work has shown that such compounds exhibit selective properties towards their biological targets. This study used a combined procedure involving docking and molecular dynamics simulations, which allowed identification of interactions responsible for stabilization of complexes, and analysis of the dynamic stability of the systems obtained. The initial data obtained during the molecular docking stage show that the ligand molecule exhibits a similar affinity towards both active sites, which was confirmed by quantification of identified interactions and energy values. However, the data do not cover dynamic aspects of the considered systems. Molecular dynamics simulations realized for both complexes indicate significant dissimilarities in dynamics properties of both side chains of the considered ligands, especially in the case of the part containing the sulfamide group. Such increased mobility of the analyzed systems disrupts the stability of binding in the stabilized complex with GSK-3β protein, which finally affects also the binding affinity of the ligand molecule towards this enzyme.  相似文献   

17.
Atomistic molecular dynamics simulation has been used to probe the effect of the A30P mutation on the structural dynamics of micelle-bound, helical αSynuclein when released in an aqueous environment. On the timescales simulated, the effect of the mutation on the secondary structure is restricted to local changes close to the mutation site in the N-terminal helical domain. The changes are transient, and all residues except Lys23 recover their initial structure. The local behavior due to the mutation gives rise to a global difference in the A30P mutant in the form of a permanent kink in the N-terminal helical domain.  相似文献   

18.
Abstract

The development of pathogenic microbial resistance toward antibiotics has become a global clinical concern. New Delhi metallo-β-lactmase-1 (NDM-1) and its variants have recently drawn immense attention for its biological ability to catalyze the hydrolysis of almost all of β-lactam antibiotics including the Carbapenems which are generally considered as the last-resort antibiotics. Also, the horizontal gene transfer is expediting the rapid spread of NDM-1 in bacteria. In the wake of this serious antibiotic resistance problem it becomes imperative to find inhibitors which can render the present antibiotics functional and useful. In the present study, we have used Molecular docking and Molecular Dynamics (MD) simulation approach to find out suitable inhibitors against NDM-1 from an array of different natural compounds. We have screened unique natural compounds from ZINC database and also a set of standard antibiotics and inhibitors. Based upon the highest binding affinity demonstrated by docking with NDM-1, the best binding antibiotic Meropenem and the top five natural compounds, viz., Withaferin A, Beta-Sitosterol, Aristolochic acid, Diosgenin and Guggulsterone E were selected and subjected to MD simulations study. The docked NDM-1 complex with withaferin A, beta-sitosterol and diosgenin were found to be more stable as compared to the one with meropenem throughout the MD simulation process with the relative RMSD and RMSF in acceptable range. In conclusion, these compounds can be readily tested in vitro and in vivo to fully establish and confirm their inhibition potentiality and can also serve as lead molecules for the development of future functional inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
Resveratrol has shown array of biological actions, and is under clinical development for various disease conditions. The etiology of diabetic neuropathy revolves around oxidative stress, AGE formation, lipid peroxidation etc. All these stimulate inflammatory processes and NF-κB cascade is considered as one of the major players of inflammatory response. Activation of NF-κB results in elevated levels of inflammatory mediators. COX-2 and TNF-α activity have also been correlated with inflammatory damage in the pathophysiology of diabetic neuropathy (DN). Therefore we investigated the effect of resveratrol on NF-κB inflammatory cascade, COX-2, TNF-α and IL-6 levels in experimental DN.We found that resveratrol protected against various functional and behavioral deficits in diabetic neuropathy in line with our earlier published reports. In this study we found that the resveratrol treatment decreased the expression of p65 and IκB-α in treated rats. Treatment also ameliorated the elevated levels of TNF-α, IL-6 and COX-2. Resveratrol treatment produced significant decrease in nerve MDA levels in treated animals which may also be contributing to reduction in neuro-inflammation. This study confirms the NF-κB inhibitory activity and anti-inflammatory activity of resveratrol which may contribute to neuroprotection in diabetic neuropathy apart from its antioxidant effect.  相似文献   

20.
The transdermal route provides numerous advantages over conventional drug delivery routes. However, passive delivery of large molecules such as proteins through the skin is challenging due to its barrier function. Therefore, to design a successful formulation, molecular interaction of these proteins with constituent molecules present in the skin responsible for its barrier function, is necessary. In this study, we have shown through extensive computer simulations that the therapeutic protein, interferon alpha (INF), can be co-delivered through the skin using the gold nanoparticle. We carried out both steered (umbrella sampling) and unrestrained coarse-grained molecular dynamics simulation to show the molecular mechanism of absorption/permeation of protein on/through skin layer in the absence/presence of gold nanoparticle. According to the steered simulations, when INF was taken alone, the free energy minimum was observed at the head group of the skin layer, whereas, when co-delivered with AuNP, it was observed in the interior of the bilayer. Unrestrained simulations have also shown that INF was adsorbed on the skin lipid bilayer head group, while in presence of AuNP, it first complexed with the AuNP and then breached the barrier. The MD simulations thus established the transdermal delivery as a possible pathway for delivery of INF protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号