首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Mercaptoethanol is a strong inhibitor of LADH. The inhibitory effect is likely due to the binding of the SH group to the enzymatic zinc ion. Various thiol compounds do not inhibit YADH and it is suggested that the zinc atoms involved in the catalytic mechanism of LADH and YADH may have different structural arrangements and that these zinc atoms in YADH may not be blocked by thiol compounds. Thiol compounds also quench the enhanced fluorescence of LADH-NADH in a pH-dependent manner. At pH 9.2, the binding of coenzyme to LADH is replaced by 2-mercaptoethanol, whilst at pH 7.3, it further quenches the fluorescence of NADH-LADH. This quenching of fluorescence is likely attributed to a conformational change and energy transfer upon binding of 2-mercaptoethanol to the LADH-NADH complex. Complete reversal of the inhibitory effect of thiol compounds on LADH can be obtained by dialysis.  相似文献   

2.
This review is a summary of our current knowledge of the structure, function and mechanism of action of the three zinc-containing alcohol dehydrogenases, YADH-1, YADH-2 and YADH-3, in baker's yeast, Saccharomyces cerevisiae. The opening section deals with the substrate specificity of the enzymes, covering the steady-state kinetic data for its most known substrates. In the following sections, the kinetic mechanism for this enzyme is reported, along with the values of all rate constants in the mechanism. The complete primary structures of the three isoenzymes of YADH are given, and the model of the 3D structure of the active site is presented. All known artificial mutations in the primary structure of the YADH are covered in full and described in detail. Further, the chemical mechanism of action for YADH is presented along with the complement of steady-state and ligand-binding data supporting this mechanism. Finally, the bio-organic chemistry of the hydride-transfer reactions catalyzed by the enzyme is covered: this chemistry explains the narrow substrate specificity and the enantioselectivity of the yeast enzyme.  相似文献   

3.
Abstract The methylotrophic yeasts, Hansenula polymorpha and Candida boidinii , and the methylotrophic Gram-negative bacteria, Paracoccus denitrificans and Thiobacillus versutus (but not Methylophaga marina ), contain NAD/GSH-dependent formaldehyde dehydrogenase when grown on C1-compounds. The enzymes appeared to be similar to each other and to the mammalian counterparts with respect to substrate specificity, including the ability to act as an alcohol dehydrogenase class III. The Gram-positive bacteria, Amycolatopsis methanolica and Rhodococcus erythropolis , possess NAD/Factor-dependent formaldehyde dehydrogenase when grown on C1-compounds or on C1-unit-containing substrates, respectively. These enzymes also exhibit alcohol dehydrogenase class III activity. Thus, like the mammalian ones, methylotrophic formaldehyde dehydrogenases show dual substrate specificity, suggesting that this is an inherent property of the enzyme.  相似文献   

4.
In contrast with other animal species, humans possess three distinct genes for class I alcohol dehydrogenase and show polymorphic variation in the ADH1B and ADH1C genes. The three class I alcohol dehydrogenase isoenzymes share approximately 93% sequence identity but differ in their substrate specificity and their developmental expression. We report here the first three-dimensional structures for the ADH1A and ADH1C*2 gene products at 2.5 and 2.0 A, respectively, and the structure of the ADH1B*1 gene product in a binary complex with cofactor at 2.2 A. Not surprisingly, the overall structure of each isoenzyme is highly similar to the others. However, the substitution of Gly for Arg at position 47 in the ADH1A isoenzyme promotes a greater extent of domain closure in the ADH1A isoenzyme, whereas substitution at position 271 may account for the lower turnover rate for the ADH1C*2 isoenzyme relative to its polymorphic variant, ADH1C*1. The substrate-binding pockets of each isoenzyme possess a unique topology that dictates each isoenzyme's distinct but overlapping substrate preferences. ADH1*B1 has the most restrictive substrate-binding site near the catalytic zinc atom, whereas both ADH1A and ADH1C*2 possess amino acid substitutions that correlate with their better efficiency for the oxidation of secondary alcohols. These structures describe the nature of their individual substrate-binding pockets and will improve our understanding of how the metabolism of beverage ethanol affects the normal metabolic processes performed by these isoenzymes.  相似文献   

5.
6.
The horse EE and human β1β1 alcohol dehydrogenase isoenzymes have almost identical protein backbone folding patterns and contain 2 tryptophans per subunit (Trp-15 and Trp-314). Tyr-286, which had been proposed to quench the fluorescence of Trp-314 by resonance energy transfer at alkaline pH in EE, is substituted by Cys in β1β1. The proposed role of Tyr-286 in pH-dependent quenching of EE is confirmed by our observation that tryptophan fluorescence of β1β1 is not substantially quenched at alkaline pH. Tyr-286 had also been implicated in the quenching of Trp-314 upon formation of the EE-NAD+-trifluoroethanol ternary complex. However, β1β1 exhibits the same extent of tryptophan fluorescence quenching as EE upon complexation, which strongly suggests that Tyr-286 is not involved in ternary complex quenching.  相似文献   

7.
Principles of protein thermostability have been studied by comparing structures of thermostable proteins with mesophilic counterparts that have a high degree of sequence identity. Two tetrameric NADP(H)-dependent alcohol dehydrogenases, one from Clostridium beijerinckii (CBADH) and the other from Thermoanaerobacter brockii (TBADH), having exceptionally high (75%) sequence identity, differ by 30 degrees in their melting temperatures. The crystal structures of CBADH and TBADH in their holo-enzyme form have been determined at a resolution of 2.05 and 2.5 A, respectively. Comparison of these two very similar structures (RMS difference in Calpha = 0.8 A) revealed several features that can account for the higher thermal stability of TBADH. These include additional ion pairs, "charged-neutral" hydrogen bonds, and prolines as well as improved stability of alpha-helices and tighter molecular packing. However, a deeper structural insight, based on the location of stabilizing elements, suggests that enhanced thermal stability of TBADH is due mainly to the strategic placement of structural determinants at positions that strengthen the interface between its subunits. This is also supported by mutational analysis of structural elements at critical locations. Thus, it is the reinforcement of the quaternary structure that is most likely to be a primary factor in preserving enzymatic activity of this oligomeric bacterial ADH at elevated temperatures.  相似文献   

8.
The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygenase (cADO), which catalyzes the conversion of Cn fatty aldehyde to its corresponding Cn-1 alk(a/e)ne, is a key enzyme in that pathway. Due to its low activity, alk(a/e)ne production by cADO is an inefficient process. Previous biochemical and structural investigations of cADO have provided some information on its catalytic reaction. However, the details of its catalytic processes remain unclear. Here we report five crystal structures of cADO from the Synechococcus elongates strain PCC7942 in both its iron-free and iron-bound forms, representing different states during its catalytic process. Structural comparisons and functional enzyme assays indicate that Glu144, one of the iron-coordinating residues, plays a vital role in the catalytic reaction of cADO. Moreover, the helix where Glu144 resides exhibits two distinct conformations that correlates with the different binding states of the di-iron center in cADO structures. Therefore, our results provide a structural explanation for the highly labile feature of cADO di-iron center, which we proposed to be related to its low enzymatic activity. On the basis of our structural and biochemical data, a possible catalytic process of cADO was proposed, which could aid the design of cADO with improved activity.  相似文献   

9.
The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.  相似文献   

10.
Summary Two NAD-dependent alcohol dehydrogenases ADH-1 and ADH-2, under independent genetic control of genes designated as Adh-1 and Adh-2 located on chromosomes 4A, 4B and 4D, have been reported in aestivum wheat (Hart 1980). Only ADH-1 is expressed in developing seeds, dry seeds, pollen and germinating seedlings. ADH-2 can be induced in seedling roots or shoots under conditions of partial anaerobiosis or by certain chemicals. Expression of ADH-1 and ADH-2 isoenzymes was investigated in undifferentiated calli from aestivum and durum wheats, rye, triticale and also in in vitro regenerated roots and leaves from aestivum cultures. Wheat callus cultures originating from seed, mature and immature embryos, mesocotyl and root, as well as cultures grown on media containing different supplements did not show any variation in the overall expression of ADH-1 or ADH-2, although differences in the band intensities were observed. The callus isoenzyme pattern was similar to that observed in roots under anaerobic conditions. Both ADH-1 and ADH-2 were expressed in in vitro regenerated roots but were absent in regenerated leaves. Expression of ADH-1 and ADH-2 in wheat calli seems to be related to the type of differentiation.  相似文献   

11.
The hydrophobic bacterium Rhodococcus rhodochrous NBRC15564 was employed as a whole-cell biocatalyst to examine its potential for bioconversion in solvent-free organic media. The genes encoding two different thermostable alcohol dehydrogenases (ADHTt1 and ADHTt2) of Thermus thermophilus HB27 were expressed in R. rhodochrous cells. To inactivate indigenous mesophilic enzymes in R. rhodochrous, transformant cells were heated at 70 °C for 10 min. Heat-treated hydrophobic wet cells were used for the bioconversion of 2,2,2-trifluoroacetophenone (TFAP) to α-(trifluoromethyl) benzyl alcohol (TFMBA) as a model reaction with ADHTt1. NADH, which was supplied in aqueous solution, was regenerated by converting cyclohexanol to cyclohexanone by ADHTt2. All reactions were performed by suspending heat-treated cells in solvent-free organic media consisting of 3.7 M TFAP and 4.8 M cyclohexanol (1:1, v/v ratio) at 60 °C. When 800 mg heat-treated R. rhodochrous cells were dispersed in 2 mL of solvent-free organic media (400 mg cells/mL), the product concentration reached about 3.6 M TFMBA by 48 h with a total NADH turnover number of approximately 900. The overall productivity was 190 mol TFMBA/kg cells/h.  相似文献   

12.
Kärkönen A  Fry SC 《Planta》2006,223(4):858-870
UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K m (for UDP-glucose) 0.5–1.0 mM; there was also a minor activity with an unusually high K m of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K m values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes EL, EM and EH respectively). EM was the single major contributor to extractable UDPGDH activity when assayed at 0.6–9.0 mM UDP-Glc. Most studies, in other plant species, had reported only EL-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least EH activity is not due to ADH. At 30 μM UDP-glucose, 20–150 μM UDP-xylose inhibited UDPGDH activity, whereas 5–15 μM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.  相似文献   

13.
Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with K ms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit. Daniel Manríquez and Islam El-Sharkawy contributed equally to the work. Accession numbers for Cm-ADH1 (ABC02081), and Cm-ADH2 (ABC02082).  相似文献   

14.
Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.  相似文献   

15.
Half-of-sites reactivity in many homodimeric and homotetrameric metalloenzymes has been known for half a century, yet its benefit remains poorly understood. A recently reported cryo-electron microscopy structure has given some clues on the less optimized reactivity of Escherichia coli ribonucleotide reductase with an asymmetric association of α2β2 subunits during catalysis. Moreover, nonequivalence of enzyme active sites has been reported in many other enzymes, possibly as a means of regulation. They are often induced by substrate binding or caused by a critical component introduced from a neighboring subunit in response to substrate loadings, such as in prostaglandin endoperoxide H synthase, cytidine triphosphate synthase, glyoxalase, tryptophan dioxygenase, and several decarboxylases or dehydrogenases. Overall, half-of-sites reactivity is likely not an act of wasting resources but rather a method devised in nature to accommodate catalytic or regulatory needs.  相似文献   

16.
The seven members of the TRP channel superfamily are divided into two main groups with five members comprising group I (TRPC/V/M/N/A) and TRPML (TRP MucoLipin) and TRPP (TRP Polycystin) making up group II. Group II channels share a high sequence homology on their transmembrane domains and are distinct from group I members as they contain a large luminal/extracellular domain between transmembrane helix 1 (S1) and S2. Since 2016, there are more than ten research papers reporting various structures of group II channels by either cryo-EM or X-ray crystallography. These studies along with recent functional analysis by the other groups have considerably strengthened our knowledge on TRPML and TRPP channels. In this review, we summarize and discuss these reports providing molecular insights into the group II TRP channel family.  相似文献   

17.
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   

18.
《遗传学报》2020,47(1):27-35
B cells express B-cell receptors(BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.  相似文献   

19.
FtsZ is a prokaryotic homologue of the eukaryotic cytoskeletal protein tubulin and plays a central role in prokaryotic cell division. Both FtsZ and tubulin are known to pass through cycles of polymerization and depolymerization, but the structural mechanisms underlying this cycle remain to be determined. Comparison of tubulin structures obtained in different states has led to a model in which the tubulin monomer undergoes a conformational switch between a "straight" form found in the walls of microtubules and a "curved" form associated with depolymerization, and it was proposed recently that this model may apply also to FtsZ. Here, we present new structures of FtsZ from47 Aquifex aeolicus,47 Bacillus subtilis, Methanococcus jannaschii and Pseudomonas aeruginosa that provide strong constraints on any proposed role for a conformational switch in the FtsZ monomer. By comparing the full range of FtsZ structures determined in different crystal forms and nucleotide states, and in the presence or in the absence of regulatory proteins, we find no evidence of a conformational change involving domain movement. Our new structural data make it clear that the previously proposed straight and curved conformations of FtsZ were related to inter-species differences in domain orientation rather than two interconvertible conformations. We propose a new model in which lateral interactions help determine the curvature of protofilaments.  相似文献   

20.
Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 103 M−1 s−1) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (Tm) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn2+ independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号