共查询到20条相似文献,搜索用时 15 毫秒
1.
We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3’-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3’-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3’-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly,except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of theN-terminal or C-terminal domains. [BMB Reports 2013; 46(1):53-58] 相似文献
2.
Zhiqi Yin Mikalai Lapkouski Wei Yang Robert Craigie 《Protein science : a publication of the Protein Society》2012,21(12):1849-1857
Integrase is the key enzyme that mediates integration of retroviral DNA into cellular DNA which is essential for viral replication. Inhibitors of HIV‐1 that target integrase recognize the nucleoprotein complexes formed by integrase and viral DNA substrate (intasomes) rather than the free enzyme. Atomic resolution structures of HIV‐1 intasomes are therefore required to understand the mechanisms of inhibition and drug resistance. To date, prototype foamy virus (PFV) is the only retrovirus for which such structures have been determined. We show that PFV strand transfer complexes (STC) can be assembled on product DNA without going through the normal forward reaction pathway. The finding that a retroviral STC can be assembled in this way may provide a powerful tool to alleviate the obstacles that impede structural studies of nucleoprotein intermediates in HIV‐1 DNA integration. 相似文献
3.
Integrase plays a critical role in the recombination of viral DNA into the host genome. Therefore, over the past decade, it has been a hot target of drug design in the fight against type 1 human immunodeficiency virus (HIV-1). Bovine immunodeficiency virus (BIV) integrase has the same function as HIV-1 integrase. We have determined crystal structures of the BIV integrase catalytic core domain (CCD) in two different crystal forms at a resolution of 2.45? and 2.2?, respectively. In crystal form I, BIV integrase CCD forms a back-to-back dimer, in which the two active sites are on opposite sides. This has also been seen in many of the CCD structures of HIV-1 integrase that were determined previously. However, in crystal form II, BIV integrase CCD forms a novel face-to-face dimer in which the two active sites are close to each other. Strikingly, the distance separating the two active sites is approximately 20 ?, a distance that perfectly matches a 5-base pair interval. Based on these data, we propose a model for the interaction of integrase with its target DNA, which is also supported by many published biochemical data. Our results provide important clues for designing new inhibitors against HIV-1. 相似文献
4.
HIV-1 integrase (IN) mediates the insertion of viral cDNA into the cell genome, a vital process for replication. This step is catalyzed by two separate DNA reaction events, termed 3'-processing and strand transfer. Here, we show that six inhibitors from five structurally different classes of compounds display a selectivity shift towards preferential strand transfer inhibition over the 3'-processing activity of IN when a single serine is substituted at position C130. Even though IN utilizes the same active site for both reactions, this finding suggests a distinct conformational dissimilarity in the mechanistic details of each IN catalytic event. 相似文献
5.
Bacteriophage lambda integrase (lambda-Int) is the prototypical member of a large family of enzymes that catalyze site-specific DNA recombination via the formation of a Holliday junction intermediate. DNA strand cleavage by lambda-Int is mediated by nucleophilic attack on the scissile phosphate by a conserved tyrosine residue, forming an intermediate with the enzyme covalently attached to the 3'-end of the cleaved strand via a phosphotyrosine linkage. The crystal structure of the catalytic domain of lambda-Int (C170) obtained in the absence of DNA revealed the tyrosine nucleophile at the protein's C terminus to be located on a beta-hairpin far from the other conserved catalytic residues and adjacent to a disordered loop. This observation suggested that a conformational change in the C terminus of the protein was required to generate the active site in cis, or alternatively, that the active site could be completed in trans by donation of the tyrosine nucleophile from a neighboring molecule in the recombining synapse. We used NMR spectroscopy together with limited proteolysis to examine the dynamics of the lambda-Int catalytic domain in the presence and absence of DNA half-site substrates with the goal of characterizing the expected conformational change. Although the C terminus is indeed flexible in the absence of DNA, we find that conformational changes in the tyrosine-containing beta-hairpin are not coupled to DNA binding. To gain structural insights into C170/DNA complexes, we took advantage of mechanistic conservation with Cre and Flp recombinases to model C170 in half-site and tetrameric Holliday junction complexes. Although the models do not reveal the nature of the conformational change required for cis cleavage, they are consistent with much of the available experimental data and provide new insights into the how trans complementation could be accommodated. 相似文献
6.
We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R → T), 313(R → T), 315(R → P), and 329(R → T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R → T), 318(K → T), and 324(K → T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication. 相似文献
7.
Protein folding coupled to DNA binding in the catalytic domain of bacteriophage lambda integrase detected by mass spectrometry 下载免费PDF全文
Kamadurai HB Subramaniam S Jones RB Green-Church KB Foster MP 《Protein science : a publication of the Protein Society》2003,12(3):620-626
Bacteriophage lambda integrase (lambda-Int) is the prototypical member of a large family of enzymes that catalyze site-specific DNA recombination via single-strand cleavage and the formation of a Holliday junction intermediate. Crystallographic and biochemical evidence indicate that substantial conformational change (i.e., folding) in the catalytic domain of the protein is required for substrate recognition and catalysis. We have examined the solution conformation of the catalytic domain (C170) in the absence and presence of a cognate "half-site" DNA oligonucleotide by electrospray ionization mass spectrometry, and circular dichroism and fluorescence spectroscopy. The distribution of ions in the positive ion electrospray mass spectrum of the free protein reveals the presence of three distinct species in solution, one corresponding to the folded protein, one to the unfolded protein, and one to a dimer. In the presence of DNA, ions are observed only for the protein-DNA complex and the folded form of the free protein. We therefore conclude that DNA binding stabilizes the global fold of the protein in a manner that is consistent with folding-coupled target recognition as a mechanism to control site-specific recombination. Furthermore, we find that inspection of the charge state distribution of ions in electrospray mass spectra provides a quick and effective means to identify conformational heterogeneity of proteins in solution and to investigate dynamic protein-nucleic acid interactions. 相似文献
8.
Jerome Wielens Stephen J. Headey David I. Rhodes David K. Chalmers Michael W. Parker 《FEBS letters》2010,584(8):1455-1462
HIV integrase (IN) is an essential enzyme in HIV replication and an important target for drug design. IN has been shown to interact with a number of cellular and viral proteins during the integration process. Disruption of these important interactions could provide a mechanism for allosteric inhibition of IN. We present the highest resolution crystal structure of the IN core domain to date. We also present a crystal structure of the IN core domain in complex with sucrose which is bound at the dimer interface in a region that has previously been reported to bind integrase inhibitors.
Structured summary
MINT-7713125: IN (uniprotkb:P04585) and IN (uniprotkb:P04585) bind (MI:0407) by X-ray crystallography (MI:0114) 相似文献9.
10.
Fitzkee NC Torchia DA Bax A 《Protein science : a publication of the Protein Society》2011,20(3):500-512
Measurements of rapid hydrogen exchange (HX) of water with protein amide sites contain valuable information on protein structure and function, but current NMR methods for measuring HX rates are limited in their applicability to large protein systems. An alternate method for measuring rapid HX is presented that is well-suited for larger proteins, and we apply the method to the deuterated, homodimeric 36 kDa HIV-1 integrase catalytic core domain (CCD). Using long mixing times for water-amide magnetization exchange at multiple pH values, HX rates spanning more than four orders of magnitude were measured, as well as NOE cross-relaxation rates to nearby exchangeable protons. HX protection factors for the CCD are found to be large (>10(4)) for residues along the dimer interface, but much smaller in many other regions. Notably, the catalytic helix (residues 152-167) exhibits low HX protection at both ends, indicative of fraying at both termini as opposed to just the N-terminal end, as originally thought. Residues in the LEDGF/p75 binding pocket also show marginal stability, with protection factors in the 10-100 range (~1.4-2.7 kcal/mol). Additionally, elevated NOE cross-relaxation rates are identified and, as expected, correspond to proximity of the amide proton to a rapidly exchanging proton, typically from an OH side chain. Indirect NOE transfer between H(2) O and the amide proton of I141, a residue in the partially disordered active site of the enzyme, suggests its proximity to the side chain of S147, an interaction seen in the DNA-bound form for a homologous integrase. 相似文献
11.
12.
Pybus OG Rambaut A Belshaw R Freckleton RP Drummond AJ Holmes EC 《Molecular biology and evolution》2007,24(3):845-852
Populations of RNA viruses are often characterized by abundant genetic variation. However, the relative fitness of these mutations is largely unknown, although this information is central to our understanding of viral emergence, immune evasion, and drug resistance. Here we develop a phylogenetic method, based on the distribution of nonsynonymous and synonymous changes, to assess the relative fitness of polymorphisms in the structural genes of 143 RNA viruses. This reveals that a substantial proportion of the amino acid variation observed in natural populations of RNA viruses comprises transient deleterious mutations that are later purged by purifying selection, potentially limiting virus adaptability. We also demonstrate, for the first time, the existence of a relationship between amino acid variability and the phylogenetic distribution of polymorphisms. From this relationship, we propose an empirical threshold for the maximum viable deleterious mutation load in RNA viruses. 相似文献
13.
The first structure of a catalytic domain from a hyperthermophilic archaeal viral integrase reveals a minimal fold similar to that of bacterial HP1 integrase and defines structural elements conserved across three domains of life. However, structural superposition on bacterial Holliday junction complexes and similarities in the C-terminal tail with that of eukaryotic Flp suggest that the catalytic tyrosine and an additional active-site lysine are delivered to neighboring subunits in trans. An intramolecular disulfide bond contributes significant thermostability in vitro. 相似文献
14.
Ao Z Jayappa KD Wang B Zheng Y Wang X Peng J Yao X 《The Journal of biological chemistry》2012,287(13):10544-10555
HIV-1 integration is promoted by viral integrase (IN) and its cellular cofactors. The lens epithelium-derived growth factor (LEDGF/p75), an IN interacting cellular cofactor, has been shown to play an important role in HIV-1 chromatin targeting and integration. However, whether other cellular cofactors are also involved in viral replication steps is still elusive. Here, we show that nucleoporin 62 (Nup62) is a chromatin-bound protein and can specifically interact with HIV-1 IN in both soluble nuclear extract and chromatin-bound fractions. The knockdown of Nup62 by shRNA reduced the association of IN with host chromatin and significantly impaired viral integration and replication in HIV-1-susceptible cells. Furthermore, the expression of the IN-binding region of Nup62 in CD4(+) T cells significantly inhibited HIV-1 infection. Taken together, these results indicate that the cellular Nup62 is specifically recruited by HIV-1 IN and contribute to an efficient viral DNA integration. 相似文献
15.
Retroviral integrase plays an important role in choosing host chromosomal sites for integration of the cDNA copy of the viral genome. The domain responsible for target site selection has been previously mapped to the central core of the protein (amino acid residues 49-238). Chimeric integrases between human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) were prepared to examine the involvement of a nonspecific DNA-binding region (residues 213-266) and certain alpha helices within the core domain in target site selection. Determination of the distribution and frequency of integration events of the chimeric integrases narrowed the target site-specifying motif to within residues 49-187 and showed that alpha 3 and alpha 4 helices (residues 123-166) were not involved in target site selection. Furthermore, the chimera with the alpha 2 helix (residues 118-121) of FIV identity displayed characteristic integration events from both HIV-1 and FIV integrases. The results indicate that the alpha 2 helix plays a role in target site preference as either part of a larger or multiple target site-specifying motif. 相似文献
16.
Site-specific recombinases of the lambda-integrase family recognize and cleave their cognate DNA sites through cooperative binding to opposite sides of the DNA substrate by a C-terminal catalytic domain and a flexibly linked "core-binding" domain; regulation of this cleavage is achieved via the formation of higher-order complexes. We report that the core-binding domain of lambda-integrase is able to stimulate the activity of the catalytic domain even when the two domains are not linked. This trans stimulation is accomplished without significantly increasing the affinity of the catalytic domain for its DNA substrate. Moreover, we show that mutations in the DNA substrate can abrogate this effect while retaining specificity determinants for cleavage. Since the domains do not significantly interact directly, this finding implies that trans activation is achieved via the DNA substrate in a manner that may be mechanistically important in this and similar DNA binding and cleaving enzymes. 相似文献
17.
Integration of human immunodeficiency virus cDNA ends by integrase (IN) into host chromosomes involves a concerted integration mechanism. IN juxtaposes two DNA blunt ends to form the synaptic complex, which is the intermediate in the concerted integration pathway. The synaptic complex is inactivated by strand transfer inhibitors (STI) with IC50 values of ∼ 20 nM for inhibition of concerted integration. We detected a new nucleoprotein complex on a native agarose gel that was produced in the presence of > 200 nM STI, termed the IN-single DNA (ISD) complex. Two IN dimers appear to bind in a parallel fashion at the DNA terminus, producing an ∼ 32-bp DNase I protective footprint. In the presence of raltegravir (RAL), MK-2048, and L-841,411, IN incorporated ∼ 20-25% of the input blunt-ended DNA substrate into the stabilized ISD complex. Seven other STI also produced the ISD complex (≤ 5% of input DNA). The formation of the ISD complex was not dependent on 3′OH processing, and the DNA was predominantly blunt ended in the complex. The RAL-resistant IN mutant N155H weakly forms the ISD complex in the presence of RAL at ∼ 25% level of wild-type IN. In contrast, MK-2048 and L-841,411 produced ∼ 3-fold to 5-fold more ISD than RAL with N155H IN, which is susceptible to these two inhibitors. The results suggest that STI are slow-binding inhibitors and that the potency to form and stabilize the ISD complex is not always related to inhibition of concerted integration. Rather, the apparent binding and dissociation properties of each STI influenced the production of the ISD complex. 相似文献
18.
J E Cleaver 《Mutation research》1977,44(3):291-298
Lesions that promote reversion from a temperature-sensitive to a wild-type phenotype were induced in temperature-sensitive late mutants of SV40 virus by UV irradiation. When cultures infected with UV-irradiated temperature-sensitive mutants were grown for various times at permissive temperature (35 degrees C) and then at restrictive temperature (39 degrees C), the reversion frequency declined just before the onset of semiconservative DNA synthesis when DNA synthesis began at 32 degrees C. This can be explained by competition between reactions that lead to the onset of viral DNA synthesis and reactions that repair the lesions before the onset of viral DNA synthesis. 相似文献
19.
20.
Aiguo Xin Mingwang Zhu Qi Hu Haisheng Miao Zhenqi Peng Yuwen He Lin Gao Huachun Li 《Virologica Sinica》2014,(5)
An amino acid mutation(R127→I) in the 3A non-structural protein of an FMDV serotype Asia1 rabbit-attenuated ZB strain was previously found after attenuation of the virus. To explore the effects of this mutation on viral replication and infection, the amino acid residue isoleucine(I) was changed to arginine(R) in the infectious cDNA clone of the rabbit-attenuated ZB strain by sitedirected mutagenesis, and the R127-mutated virus was rescued. BHK monolayer cells and suckling mice were inoculated with the R127-mutated virus to test its growth property and pathogenicity, respectively. The effects of the R127 mutation on viral replication and virulence were analyzed. The data showed that there was a slight difference in plaque morphology between the R127-mutated and wild-type viruses. The growth rate of the mutated virus was lower in BHK-21 cells and its virulence in suckling mice was also attenuated. This study indicates that the R127 mutation in 3A may play an important role in FMDV replication in vitro and in pathogenicity in suckling mice. 相似文献