首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
BACKGROUND: We explored the possibility of using normal adult rhesus macaques for the preclinical assessment of safety, immunogenicity, and efficacy of newly developed vaccines against Streptococcus pneumoniae infection of the lung. METHODS: Our primary objective was to determine whether an intra-bronchial inoculum of at least 10(6)S. pneumoniae colony-forming units, or one as high as 10(8)-10(9) organisms, could detectably survive in rhesus macaques for a period longer than 1-2 weeks. If so, we hypothesized, it would be possible to observe signs of pneumonia commonly observed in humans, and discriminate between vaccinated/protected animals and controls. Infection was detectable in bronchoalveolar lavage fluids 3-5 weeks post-inoculation. RESULTS: The clinical course of disease mimicked aspects of that of human pneumococcal pneumonia. Signs of inflammation typical of the disease in humans, such as elevated concentrations of neutrophils and of pro-inflammatory cytokines in bronchoalveolar lavage fluids were also observed. CONCLUSIONS: These findings underscore the utility of this model to assess the safety, immunogenicity, and efficacy of newly developed S. pneumoniae vaccines.  相似文献   

3.
Streptococcus pneumoniae is a major public health problem and new strategies for the development of cost-effective alternative vaccines are important. The use of protein antigens such as PspA (pneumococcal surface protein A) is a promising approach to increase coverage at reduced costs. We have previously described the induction of a strong antibody response by a DNA vaccine expressing a C-terminal fragment of PspA. Fusion of this fragment with the cytoplasmic variant of SV40 large T-antigen (CT-Ag) caused reduction in specific interferon-gamma produced by stimulated spleen cells. In this work we show that the DNA vaccine expressing the C-terminal region of PspA elicits significant protection in mice against intraperitoneal challenge with a virulent strain of S. pneumoniae. Furthermore, fusion with CT-Ag completely abrogated the protection elicited by DNA immunization with this fragment. In this case, protection did not correlate with total anti-PspA antibody production nor with total IgG2a levels. The anti-PspA sera obtained from both constructs showed equivalent opsonic activity of pneumococci, indicating that the antibodies produced were functional. We could, though, observe a correlation between a lower IgG1:IgG2a ratio, which is indicative of a stronger bias towards Th1 responses, and protection. We also show that a vector expressing the most variable N-terminal alpha-helical region induces higher antibody formation, with increased protection of mice against intraperitoneal challenge with a more virulent strain of S. pneumoniae. As a whole, these results indicate that antibodies elicited against PspA would not be solely responsible for the protection induced by DNA vaccination and that cell-mediated immune responses could also be involved in protection against pneumococcal sepsis.  相似文献   

4.
The rates of invasive pneumococcal disease (IPD), serotype distribution and antimicrobial susceptibility prior to and after the introduction of the heptavalent pneumococcal conjugate vaccine in Portuguese children were evaluated. The changes in incidence of IPD in children under 1 year old between the two periods of the study was not significant (P=0.53), despite the 21% decline. In children under 18 years old there was a 27.7% decrease in vaccine serotypes. All nonvaccine serotypes increased 71.4%. The decrease in vaccine serotypes was more impressive during the first year of life (-54.8%) than for children between 1 and 5 years of age (-19.1%). Among children under 1 year old, penicillin nonsusceptible isolates declined between the two periods of the study (47.2% vs. 25.0%) (P=0.03), as did those of cefotaxime and ceftriaxone nonsusceptible isolates. No changes were observed for isolates nonsusceptible to tetracycline and macrolides. The serotypes of these nonsusceptible isolates differed after the introduction of vaccine (P=0.01). Multiresistance increased 57.1% after the introduction of vaccine. Multiresistant isolates with vaccine serotype declined 42.9% (P<0.001), and nonvaccine serotypes appeared during the vaccination period (P<0.001). These findings suggest a replacement of vaccine serotypes by nonvaccine serotypes, mainly among nonsusceptible isolates.  相似文献   

5.
In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.  相似文献   

6.
Some neutralizing epitopes on HIV-1 envelope proteins were identified to induce antibodies which could effectively inhibit the infection of different strains in vitro. But only very low levels of these antibodies were determined in the HIV-1 infected individuals. To increase the levels of protective antibodies in vivo, we suggested multi-epitope vaccine as a new strategy to induce high level of neutralization antibodies with predefined multi-epitope specificity. A synthesized epitope peptide MP (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD) containing three neutralizing epitopes (GPGRAFY, ELDKWA, RILAVERYLKD) was conjugated to carrier protein KLH, and then used for immunization in mouse together with aluminium adjuvant or Freund's adjuvant (FA). The candidate MP-KLH multi-epitope vaccine in aluminium adjuvant could induce antibody response very strongly to the epitope peptide C-(RILAVERYLKD-G)2 and the immunosuppressive peptide (P1) (LQARILAVERYLKDQQL) (antibody titer: 1:51200), strongly to the epitope peptide C-(ELDKWA-G)4 and the C-domain peptide (P2) (1:12800), and moderately to the epitope peptide C-(GPGRAFY)4 and the V3 loop peptide (1:1600). The immunoblotting analysis demonstrated that the antibodies in sera could recognize P1, P2, V3 loop peptides and rsgp41 (aa 539-684). These results are similar with that in the case of PI-BSA in FA, and suggest that the multi-epitope vaccine in aluminium could induce high levels of antibodies of predefined multi-epitope specificity, which provides experimental evidence for the new strategy to develop an effective neutralizing antibody-based multi-epitope vaccine against HIV-1.  相似文献   

7.
合成肽疫苗的分子设计   总被引:2,自引:0,他引:2  
合成肽疫苗能克服常规疫苗的缺点,很早就被认为是动物传染病预防用的终极疫苗。然而多年的研究结果表明,合成肽疫苗免疫动物后所起的免疫保护作用并没有象人们当初设想的那样理想,同时证明了构建的合成肽疫苗的抗原性及其免疫原性要受到其自身组成及宿主免疫系统等多种因素的影响。在诱导机体产生免疫的过程中,单一的中和抗原表位是远远不够的,增加中和抗原表位的数目和引入细胞抗原表位将起到必不可少的辅助协同作用。若想提高合成肽疫苗的免疫效果,在搞清合成肽疫苗的免疫机理并在如何利用有限的抗原表位诱导强有力的免疫保护作用等方面需要做进一步深入地研究。  相似文献   

8.
脂蛋白是一类广泛存在于革兰氏阴性细菌和革兰氏阳性细菌中的细胞膜锚定蛋白,具有多种生物学功能.脂蛋白不仅作为细菌的毒力因子,而且能够识别和激活宿主的免疫系统,是当前预防和治疗细菌感染的热门靶点之一,本文对链球菌中脂蛋白的主要功能及其在疫苗和抗菌药物研究中的进展进行了综述和展望,为今后链球菌中脂蛋白的深入研究拓宽了思路.  相似文献   

9.
Pneumococcal surface protein A (PspA) is an antigenic variable vaccine candidate of Streptococcus pneumoniae. Epitope similarities between PspA from the American vaccine candidate strain Rx1 and Norwegian clinical isolates were studied using PspA specific monoclonal antibodies (mAbs) made against clinical Norwegian strains. Using recombinant PspA/Rx1 fragments and immunoblotting the epitopes for mAbs were mapped to two regions of amino acids, 1-67 and 67-236. The discovered epitopes were visualized by modelling of the PspA:Fab part of mAb in three dimensions. Flow cytometric analysis showed that the epitopes for majority of mAbs were accessible for antibody binding on live pneumococci. Also, the epitopes for majority of the mAbs are widely expressed among clinical Norwegian isolates.  相似文献   

10.
Infection of Streptococcus oralis NCTC 11427 by pneumococcal phages   总被引:2,自引:0,他引:2  
We have found a group of pneumococcal bacteriophages (Cp-1, Cp-7) that can successfully infect and replicate in Streptococcus oralis, whereas Dp-1 was unable to infect this species. We have also developed conditions that allowed transfection of S. oralis using Dp-1 DNA. Our results support the direct involvement of the phage-coded lysins in the liberation of the phage progeny from infected S. oralis cells. Since S. oralis and S. pneumoniae are bacteria that share the same ecological niche in humans, the availability of the system described here should allow to extend our current studies on the modular organization of the lytic enzymes and might serve as a tool to study the evolutionary relationships between host and parasite.  相似文献   

11.
Abstract

Alkhurma hemorrhagic fever virus (ALKV) causes a fatal clinical disease in human beings of different tropical and sub-tropical regions. Recently, the ALKV epidemics have raised a great public health concern with the room for improvement in the essential therapeutic interventions. Despite increased realistic clinical cases of ALKV infection, the efficient vaccine or immunotherapy is not yet available to-date. Therefore, the current study aimed to analyze the envelope glycoprotein of ALKV for the development of B-cells and T-cells epitope-based peptide vaccine using the computational in silico method. Utilizing various immunoinformatics approaches, a total of 5 B-cells and 25 T-cells (MHC-I?=?17, MHC-II?=?8) epitope-based peptides were predicted in the current study. All predicted peptides had highest antigenicity and immunogenicity scores along with high binding affinity to human leukocyte antigen (HLA) class II alleles. Among 25T-cell epitopes, three peptides were found alike to have affinity to bind both MHC-I and MHC-II alleles. These outcomes suggested that these predicted epitopes could potentially be used in the development of an efficient vaccine against ALKV, which may enable to elicit both humoral and cell-mediated immunity. Although, these predicted peptides could be useful in designing a candidate vaccine for the prevention of ALKV; however, it’s in vitro and in vivo assessments are prerequisite.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
肺炎链球菌导致的疾病已成为全球一个重要的公共卫生问题。疫苗开发及使用成为重要的预防策略,目前肺炎球菌疫苗主要有多糖疫苗和多糖蛋白结合疫苗二类。对肺炎链球菌病原学、流行病学、所致疾病、疫苗研发进展及疫苗使用情况进行了综述。  相似文献   

13.
Streptococcus pneumoniae is a major bacterial respiratory pathogen. Current licensed pneumococcal polysaccharide and polysaccharide–protein conjugate vaccines are administered by an intramuscular injection. In order to develop a new-generation vaccine that can be administered in a needle-free mucosal manner, we have constructed early 1 and 3 gene regions (E1/E3) deleted, replication-defective adenoviral vectors encoding pneumococcal surface antigen A (PsaA), the N-fragment of pneumococcal surface protein A (N-PspA), and the detoxified mutant pneumolysin (PdB) from S. pneumoniae strain D39. Intranasal vaccination with the three adenoviral vectors (Ad/PsaA, Ad/N-PspA, and Ad/PdB) in mice resulted in robust antigen-specific serum immunoglobulin G responses, as demonstrated by an enzyme-linked immunosorbent assay. In addition, nasal mucosal vaccination with the combination of the three adenoviral vectors conferred protection against S. pneumoniae strain D39 colonization in mouse lungs. Taken together, these data demonstrate the feasibility of developing a mucosal vaccine against S. pneumoniae using recombinant adenoviruses for antigen delivery.  相似文献   

14.
Streptococcus pneumoniae is a major bacterial pathogen that causes diseases such as pneumonia and meningitis in humans. One of the antigens of this organism is pneumococcal surface protein A (PspA). PspA is a virulence factor of the bacteria that has been shown to protect mice against pneumococcal infection. Among several domains of the protein, the amino-terminal part of PspA has been found to be a functional module which is essential for full pneumococcal infectivity. In order to investigate the properties of this protein, several internal fragments of the pspA gene were amplified from S. pneumoniae strain Rxl using the polymerase chain reaction (PCR). The fragments were then cloned and expressed in Escherichia coli in a soluble form using the T7 RNA polymerase pET15b and pET21a vector systems. The size of these fragments ranges from 24 to 32 kDa corresponding to amino acids 67-272 (PspA-206), 1-236 (PspA-236), and 1-272 (PspA-272). The fragments were purified to homogeneity using nickel chelating affinity, size exclusion, and anion-exchange chromatographic methods. During the course of expression of some of the PspA constructs, a shorter fragment was coexpressed due to translational pausing and subsequent secondary translation initiation. Two of the constructs, PspA-206 and PspA-272, were also crystallized allowing for the initiation of a structural elucidation of PspA.  相似文献   

15.
Serotypes and antibiotic sensitivities were determined for 338 strains of Streptococcus pneumoniae from children of north-western Greece with invasive pneumococcal disease (IPD), acute otitis media (AOM) and nasopharyngeal carriage. The most common serotypes among the isolates from IPD were 14 and 19F, while 3, 19F, 9V and 14 were the major cause of AOM. In these groups, the heptavalent conjugate vaccine for pneumococci (7vPCV) seems to cover 90.5% of the serotypes isolated from children less than 2 years old. Serotypes 23F and 6B were the most prevalent in carrier strains. Overall, 23.7% of the isolates were penicillin nonsusceptible (PNS), 97% were fully susceptible to cefotaxime, 29% were resistant to erythromycin, 11.2% to co-trimoxazole and 1.2% to clindamycin.  相似文献   

16.
Peptide immunotherapy using dominant T-cell epitopes is safer and more effective than conventional immunotherapy for the treatment of immunoglobulin E (IgE)-mediated allergic diseases. When allergenic T-cell epitope peptides are expressed in the edible part of transgenic plants, successful mucosal immune tolerance to these allergens may be attainable by the consumption of these plants. In this study, we generated transgenic rice seed that accumulated high concentrations (about 60 microg per grain) of polypeptide consisting of seven dominant human T-cell epitopes derived from the Japanese cedar pollen allergens, Cry j 1 and Cry j 2, in the endosperm. Oral administration of these transgenic rice seeds to B10.S mice before or after they were immunized with Cry j 1 holoprotein reduced not only their T-cell proliferative response to Cry j 1, but also their serum IgE levels, proving the efficacy of oral immunotherapy for the treatment of pollinosis.  相似文献   

17.
Abstract

Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus. The selected proteins were retrieved from ViralZone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain K12 and the vaccine constructs had no similarity with entire human proteome. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
The Zika virus is a rapidly spreading Aedes mosquito‐borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T‐lymphocyte and helper T‐lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B‐cell epitopes was also confirmed by B‐cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll‐like receptor‐3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine.  相似文献   

19.
Tamarins (Saguinus labiatus) were utilized to study host defenses against pneumococcal bacteremia. Tamarins had a poor antibody response to immunization with varying doses of pneumococcal capsular polysaccharide (PCP) vaccine (2 of 15 positive) or to infection with serotype 7F Streptococcus pneumoniae (2 of 14 positive). Tamarins were protected against challenge with a lethal dose of serotype 7F S. pneumoniae if the bacteria were preopsonized with human immune globulin intravenous or if the tamarins were injected with the immune globulin 30 min before challenge. There was minimal protection utilizing a mouse monoclonal anti-type 7F PCP antibody.  相似文献   

20.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is associated with hemorrhagic colitis, thrombotic thrombocytopenic purpura, and hemolytic-uremic syndrome in humans. B-cell epitopes of intimin γ from EHEC O157:H7 were predicted and synthesized for evaluating their immunogenicity and protective effect and for screening a novel synthetic peptide vaccine. In the present study, five B-cell epitopes of IntC300 were predicted by Hopp-Woods, Chou-Fasman, Karplus-Schulz, Emini, Jameson-Wolf and Kolaskar-Tongaonakar analysis. One of them, KT-12 (KASITEIKADKT) was coupled with keyhole limpet hemocyanin, and used to immunize BALB/c mice three times by subcutaneous and intranasal injection. Mouse serum titers of IgG and IgA were assessed by indirect ELISA. Oral inoculation of EHEC O157:H7 resulted in infection and death of the mice. It was found that B-cell epitopes are located within or near the peptide segments 658-669, 711-723, 824-833, 897-914, 919-931. Both subcutaneous and intranasal immunization induced higher concentrations of IgG antibodies, as detected by indirect ELISA, and nasal-mucosal immunization induced the production of high concentrations of IgA antibodies. After infection with a lethal dose of EHEC O157:H7, the survival rate of mice that had received subcutaneous immunization was not significantly different from that of the control group (P > 0.05). On the other hand, mice that received intranasal immunization showed a better survival rate than the group that received subcutaneous immunization (P < 0.05). The synthesized antigenic peptide KT-12 induced mice to produce higher concentrations of IgG and IgA after immunization, but only intranasal immunization of KT-12 succeeded in protecting most mice from infection with EHEC O157:H7. This study suggests that the synthesized antigenic peptide KT-12 is be a potential vaccine candidate against EHEC O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号