首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.

  相似文献   

2.
Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.  相似文献   

3.
An optimization method for repeated fed-batch fermentation was established with the aim of improving the recombinant human serum albumin (rHSA) production in Pichia pastoris. A simulation model for fed-batch fermentation was formulated and the optimal methanol-feeding policy calculated by dynamic programming method using five different methanol-feeding periods. The necessary state variables were collected from the calculated results and used for further optimization of repeated fed-batch fermentation. The optimal operation policy was investigated using the pre-collected state variables by estimating the overall profit per total methanol-feeding time. The calculated results indicated that the initial cell mass from the 2nd fed-batch fermentation on should be set at 35 or 40 g and methanol-feeding time at 264 h. In repeated fed-batch fermentation using the optimal operation policy, actual culture volume was in good agreement with the values simulated by model equations, but some discrepancy was observed in rHSA production. Minimum experiments were therefore carried out to re-evaluate rHSA production levels, which were then applied in re-calculations to determine the optimal operation policy. The optimal policy for repeated fed-batch fermentation established in the present study (i.e., 4-times-repeated fed-batch fermentation) achieved a 47% increase in annual rHSA production. Optimization of the culture period also brought about a 28% increase in annual rHSA production even in simple (not repeated) fed-batch fermentation.  相似文献   

4.
利用代谢工程手段理性改造野生大肠杆菌的莽草酸(Shikimic acid,SA)合成途径及相关代谢节点,以构建高产莽草酸的工程菌株.根据细胞代谢网络分析,利用Red-Xer重组系统连续删除了野生型大肠杆菌CICIMB0013的莽草酸激酶基因(aroL、aroK),葡萄糖磷酸转移酶系统(PTS)的关键组分EIICBglc的编码基因(ptsG)以及奎宁酸/莽草酸脱氢酶基因(ydiB)并系统评价了基因删除对细胞的生长、葡萄糖代谢和莽草酸积累的影响.aroL、aroK的删除阻断了莽草酸进一步转化成为莽草酸-3-磷酸,初步提高莽草酸的累积.删除ptsG基因使大肠杆菌PTS系统部分缺失,细胞通过GalP-glk(半乳糖透性酶-葡萄糖激酶)途径,利用ATP将葡萄糖磷酸化后进入细胞.利用该途径运输葡萄糖能够减少PEP的消耗,使得更多的碳代谢流进入莽草酸合成途径,从而显著提高了莽草酸的产量.在此基础上删除ydiB基因,阻止了莽草酸合成的前体物质3-脱氢奎宁酸转化为副产物奎宁酸(Quinic acid,QA),进一步提高了莽草酸的累积.初步发酵显示4个基因缺失的大肠杆菌代谢工程菌生产莽草酸的能力比原始菌提高了90多倍.  相似文献   

5.
Enterococcus mundtii ST4SA produces a broad-spectrum bacteriocin (bacST4SA), active against Gram-positive and Gramnegative bacteria. Growth in corn steep liquor (CSL) with a sugar content of 5.0 and 10.0 g/l yielded bacST4SA levels of 12800 AU/ml. A four-fold increase in bacST4SA production (51200 AU/ml) was recorded in CSL with a sugar content of 7.5 g/l supplemented with 6.5 g/l yeast extract (CSL-YE). Poor growth and low levels of bacST4SA production were observed when cells were grown in CSL-YE controlled at pH 5.5. Fermentation at pH 7.5 yielded 25600 AU/ml after 6 h, but the activity levels decreased to approximately 1000 AU/ml during the next 6 h. Adjustment of the culture pH from 6.5 to 5.5 after 6 h of fermentation extended bacST4SA activity (51200 AU/ml) over 8 h. Activity then decreased to 25600 AU/ml and was maintained this level for 10 h. Optimal levels of bacST4SA production (102400 AU/ml) were obtained after 6 h of fermentation in CSL-YE supplemented with 7.5 g/l glucose at the start of the fermentation. This level of production was maintained by changing the culture pH from 6.5 after 6 h of fermentation to pH 5.5. This study proved that bacST4SA could be produced at high levels in an inexpensive industrial medium byE. mundtii ST4SA.  相似文献   

6.
Riboflavin is an important nutrient for humans and animals. Industrial production has shifted completely from chemical synthesis to microbial fermentation. First generation riboflavin production was improved by a combination of traditional mutagenesis and genetic engineering, and isolated strains have been used in industry. As the DNA genome of riboflavin producers has the potential to reveal new technologies, DNA microarray, proteomic and metabolic analyses have been applied to the analysis of hyper-riboflavin producers. In this review, disparity mutagenesis technology is introduced as a means of improving riboflavin production by Ashbya gossypii. DNA microarray, proteomic and metabolic analyses of this high riboflavin producer are discussed, as well as recent riboflavin production trends, costs and future improvements.  相似文献   

7.
Many batch fermentation processes are operated throughout the world for the production of alcohol (ethanol) from sugar-based feedstocks but very few truly continuous processes are in operation. This review compares the two modes of operation and some advantages of the continuous processes are examined. Possible markets for continuous processes are identified and some possible explanations for the, as yet, lack of wide acceptance of continuous processes are offered. Seven different commercially available processes are reviewed.  相似文献   

8.
Cell recycle and vacuum fermentation processes are described for the continuous production of ethanol. Preliminary process design studies are employed to make an economic comparison of these alternative fermentation schemes with continuous and batch fermentation technologies. Designs are based on a production capacity of 78,000 gal 95% ethanol (EtOH)/day employing molasses as the fermentation substrate. The studies indicate that a 57% reduction in fixed capital investment is realized by continuous rather than batch operation. Further decreases in required capital investment of 68 and 71% over batch fermentation were obtained for cell recycle and vacuum operation, respectively. However, ethanol production costs were dominated by the cost of molasses, representing over 75% of the total manufacturing cost. But, when a reasonable yeast by-product credit was assumed, the net production cost for 95% ethanol was estimated at 82.3 and 80.6 cent/gal, for the cell recycle and vacuum processes, respectively.  相似文献   

9.
Biofuels produced from lignocellulosic biomass can significantly reduce the energy dependency on fossil fuels and the resulting effects on environment. In this respect, cellulosic ethanol as an alternative fuel has the potential to become a viable energy source in the near future. Over the past few decades, tremendous effort has been undertaken to make cellulosic ethanol cost competitive with conventional fossil fuels. The pretreatment step is always necessary to deconstruct the recalcitrant structures and to make cellulose more accessible to enzymes. A large number of pretreatment technologies involving physical, chemical, biological, and combined approaches have been developed and tested at the pilot scale. Furthermore, various strategies and methods, including multi-enzyme complex, non-catalytic additives, enzyme recycling, high solids operation, design of novel bioreactors, and strain improvement have also been implemented to improve the efficiency of subsequent enzymatic hydrolysis and fermentation. These technologies provide significant opportunities for lower total cost, thus making large-scale production of cellulosic ethanol possible. Meanwhile, many researchers have focused on the key factors that limit cellulose hydrolysis, and analyzing the reaction mechanisms of cellulase. This review describes the most recent advances on process intensification and mechanism research of pretreatment, enzymatic hydrolysis, and fermentation during the production of cellulosic ethanol.  相似文献   

10.
Heavy reliance on petroleum-based products drives continuous exploitation of fossil fuels, and results in serious environmental and climate problems. To address such an issue, there is a shift from petroleum sources to renewable ones. Biochemical conversion via fermentation is a primary platform for converting renewable sources to biofuels and bulk chemicals. In order to provide cost-competitive alternatives, it is imperative to develop efficient, cost-saving, and robust fermentation processes. Non-sterile fermentation offers several benefits compared to sterile fermentation, including elimination of sterility, reduced maintenance requirements, relatively simple bioreactor design, and simplified operation. Thus, cost effectiveness of non-sterile fermentation makes it a practical platform for low cost, large volume production of biofuels and bulk chemicals. Many approaches have been developed to conduct non-sterile fermentation without sacrificing the yields and productivities of fermentation products. This review focuses on the strategies for conducting non-sterile fermentation. The challenges facing non-sterile fermentation are also discussed.  相似文献   

11.
Clostridial acetone/butanol fermentation used to rank second only to ethanol fermentation by yeast in its scale of production and thus is one of the largest biotechnological processes known. Its decline since about 1950 has been caused by increasing substrate costs and the availability of much cheaper feedstocks for chemical solvent synthesis by the petrochemical industry. The so-called oil crisis in 1973 led to renewed interest in novel fermentation and product recovery technologies as well as in the metabolism and genetics of the bacterial species involved. As a consequence, almost all of the enzymes leading to solvent formation are known, their genes have been sequenced (in fact, Clostridium acetobutylicum has been recently included in the microbial genome sequencing project), the regulatory mechanisms controlling solventogenesis have begun to emerge and recombinant DNA techniques have been developed for these clostridia to construct specific production strains. In parallel, cheap agricultural-waste-based feedstocks have been exploited for their potential as novel substrates, continuous culture methods have been successfully established and new on-line product recovery technologies are now available, such as gas stripping, liquid/liquid extraction, and membrane-based methods. In combination with these achievements, a reintroduction of acetone/butanol fermentation on an industrial scale seems to be economically feasible, a view that is supported by a new pilot plant in Austria recently coming into operation. Received: 18 December 1997 / Received revision: 27 January 1998 / Accepted: 27 January 1998  相似文献   

12.
丛梗孢酵母发酵产赤藓糖醇的响应面优化   总被引:1,自引:0,他引:1  
为了提高丛梗孢酵母发酵产赤藓糖醇的产量,在前期单因素实验结果的基础上,利用Plackett-Burman实验设计对影响其产赤藓糖醇的发酵条件进行评估并筛选出了影响显著的3个因素:葡萄糖、初始pH和温度.采用响应面法进行实验方案设计,利用SAS软件对其结果进行二次回归分析,确定了优化后的发酵条件为:葡萄糖260g/L、酵...  相似文献   

13.
Extractive fermentation (or in situ product removal (ISPR)) is an operational method used to combat product inhibition in fermentations. To achieve ISPR, different separation techniques, modes of operation and physical reactor configurations have been proposed. However, the relative paucity of industrial application necessitates continued investigation into reactor systems. This article outlines a bioreactor designed to facilitate in situ product extraction and recovery, through adapting the reaction volume to include a settler and solvent extraction and recycle section. This semipartition bioreactor is proposed as a new mode of operation for continuous liquid‐liquid extractive fermentation. The design is demonstrated as a modified bench‐top fermentation vessel, initially analysed in terms of fluid dynamic studies, in a model two‐liquid phase system. A continuous abiotic simulation of lactic acid (LA) fermentation is then demonstrated. The results show that mixing in the main reaction vessel is unaffected by the inserted settling zone, and that the size of the settling tube effects the maximum volumetric removal rate. In these tests the largest settling tube gave a potential continuous volumetric removal rate of 7.63 ml/min; sufficiently large to allow for continuous product extraction even in a highly productive fermentation. To demonstrate the applicability of the developed reactor, an abiotic simulation of a LA fermentation was performed. LA was added to reactor continuously at a rate of 33ml/h, while continuous in situ extraction removed the LA using 15% trioctylamine in oleyl alcohol. The reactor showed stable LA concentration of 1 g/L, with the balance of the LA successfully extracted and recovered using back extraction. This study demonstrates a potentially useful physical configuration for continuous in situ extraction.  相似文献   

14.
Aspects of fermenter design for solid-state fermentations   总被引:3,自引:0,他引:3  
Solid-state fermentation has gained importance recently due to several advantages over submerged fermentations. Bioreactor design aspects, which are important criteria, however, have not been given enough attention by researchers of solid-state fermentations and the present state of knowledge does not indicate an ideal type of bioreactor for solid state fermentations. This paper reviews different types of bioreactor which have been described and used for various purposes, incorporating several modification for improved operation and performance.  相似文献   

15.
ABSTRACT

The study investigated the production of volatile organic compounds during the fermentation of maize containing 26.8% dry matter (DM). Forage was ensiled without additive or treated with 2 ml/kg of a chemical silage additive (SA) containing per litre 257 g sodium benzoate, 134 g potassium sorbate and 57 g ammonium propionate, and either sealed immediately or with a delay of 24 h. During the fermentation process, DM-losses, fermentation pattern (including ethyl lactate [EL] and ethyl acetate [EA]) and yeast numbers were determined. Delayed sealing and no SA resulted in highest DM losses with significant interactions between sealing time (ST) and SA on all sampling days (p < 0.001). The effects on organic acid production were variable depending on storage length. Ethanol production was affected by ST and SA, but promptly sealed silage treated with SA had consistently the lowest concentrations. Higher ethanol content during fermentation was associated with higher DM losses, as reflected by a strongly linear, positive relationship (R2 = 0.70, p < 0.001). Compared with promptly sealed silage, the counts of yeasts were higher after delayed sealing during the first 7 d of storage (p < 0.001). Moreover, SA reduced yeast numbers compared with untreated silage (p < 0.01). EL concentrations increased throughout storage, whereas EA acetate accumulation was very rapid and intense already during the early stages of fermentation and peaked on d 34. The differences in concentrations and accumulation pattern between EL and EA, especially during the early fermentation phases, make evident that their synthesis was facilitated by different pathways and reactions, respectively.  相似文献   

16.
Conventional stirred-tank fermentors are inefficient in carrying out certain fermentation processes because of one or more of the following constraints: media backmix–flow, solids wall–deposits, microbial growth–disruption. Two series of novel design of aerated scraped tubular fermentors have been developed to over come the deleterious effects of these constraints. One design is based on a horizontal tube fitted with an internal mechanical wall-scraper that also promotes media segregation; the other design is based on a vertical array of vessels interconnected by small gas-jetting orifices that promote media segregation and clean-surface operation. Tests with cultures of Trichdorma viride (for single-cell protein production) and Candida lipolytica (for lipase production) have been carried out. It is shown that these novel fermentors can minimize the effects of catabolite repression inherent in both cultures and of wall growth in the former.  相似文献   

17.
Bioethanol is the most commonly used renewable biofuel as an alternative to fossil fuels. Many microbial strains can convert lignocellulosics into bioethanol. However, very few natural strains with a high capability of fermenting pentose sugars and simultaneously utilizing various sugars have been reported. In this study, fermentation of sugar by Fusarium oxysporum G was performed for the production of ethanol to improve the performance of the fermentation process. The influences of pH, substrate concentration, temperature, and rotation speed on ethanol fermentation are investigated. The three significant factors (pH, substrate concentration, and temperature) are further optimized by quadratic orthogonal rotation regression combination design and response surface methodology (RSM). The optimum conditions are pH 4, 40?g/L of xylose, 32?°C, and 110?rpm obtained through single factor experiment design. Finally, it is found that the maximum ethanol production (10.0?g/L) can be achieved after 7 d of fermentation under conditions of pH 3.87, 45.2?g/L of xylose, and 30.4?°C. Glucose is utilized preferentially for the glucose–xylose mixture during the initial fermentation stage, but glucose and xylose are synchronously consumed without preference in the second period. These findings are significant for the potential industrial application of this strain for bioethanol production.  相似文献   

18.
Dichloroacetate (DCA) and trichloroacetate (TCA) are by-products that are formed during the process of water chlorination and have been previously shown to induce superoxide anion (SA) production and cellular death when added to J774.A1 macrophage cultures. In this study, the effects of superoxide dismutase (SOD) and polyclonal tumor necrosis factor-alpha (TNF-alpha) antibodies on DCA- and TCA-induced SA production and cellular death have been tested on the J774.A1 macrophage cultures. TCA and DCA were added to different cultures either alone, each at a concentration of 16 mM, or in combination with SOD (2-12 units/ml), or with TNF-alpha antibodies (10 and 25 units/ml). Cells were incubated for 48 h, after which cellular death/viability, lactate dehydrognase (LDH) leakage by the cells, and SA production by the cells were determined. While TCA and DCA caused significant cellular toxicity, indicated by reduction in cellular viability and increases in LDH leakage and SA production, SOD addition resulted in significant reduction of the effects induced by the compounds. On the other hand, addition of TNF-alpha antibodies to the DCA- and TCA-treated cultures resulted in significant reduction of DCA- but not TCA-induced cellular death and SA production by the cells. Although these results suggest a significant role for SA in DCA- and TCA-induced cellular death, they may also suggest two different mechanisms for the chloroacetate-induced SA production by the cells.  相似文献   

19.
Polyhydroxyalkanoates are biodegradable polymers produced by prokaryotic organisms from renewable resources. The production of PHAs by submerged fermentation processes has been intensively studied over the last 30 years. In recent years, alternative strategies have been proposed, such as the use of solid-state fermentation or the production of PHAs in transgenic plants. This paper gives an overview of submerged and solid-state fermentation processes used to produce PHAs from waste materials and by-products. The use of these low-cost raw materials has the potential to reduce PHA production costs, because the raw material costs contribute a significant part of production costs in traditional PHA production processes.  相似文献   

20.
Fermentative hydrogen production (FHP) has received a great R & D interest in recent decades, as it offers a potential means of producing H2 from a variety of renewable resources, even wastewater via a low energy continuous process. Various extracellular metabolites including ethanol, acetate, butyrate and lactate can be produced during the fermentation, building a complex metabolic network of the FHP. Except for the recognition of its complexity, the metabolic flux network has not been well understood. Studies on biochemical reactions and metabolic flux network associated with the FHP in anaerobic fermentation system have only been drawn attention in recent years. This review summarizes the biochemical reactions taking place in the metabolic network of FHP. We discuss how the key operation factors influence metabolism in the FHP process. Recently developed and applied technologies for metabolic flux analysis have been described. Future studies on the metabolic network to enhance fermentative hydrogen production by strict anaerobes are recommended. It is expected that this review can provide useful information in terms of fundamental knowledge and update technology for scientists and research engineers in the field of biological hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号