首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that platelet-activating factor (PAF), a weak primary stimulus for neutrophil superoxide generation, synergistically enhances neutrophil oxidative responses to the tumor promoter phorbol myristate acetate (PMA). Since PMA is known to cause cytosol-to-membrane shift of calcium-activated, phospholipid-dependent protein kinase (protein kinase c, PKC) in human neutrophils, we investigated the role of PAF in modifying PMA-induced PKC activation/translocation. Protein kinase activity was measured as the incorporation of 32P from gamma-32P-ATP into histone H1 induced by enzyme in cytosolic and particulate fractions from sonicated human neutrophils. PAF did not alter the sharp decrease in cytosolic PKC activity induced by PMA. However, in the presence of PAF and PMA, total particulate protein kinase activity increased markedly over that detected in the presence of PMA alone (144 +/- 9 pmoles 32P/10(7)PMN/minute in cells treated with 20 ng/ml PMA compared to 267 +/- 24 pmoles 32P in cells exposed to PMA and 10(-6)M PAF). The increase in total particulate protein kinase activity was synergistic for the two stimuli, required the presence of cytochalasin B during stimulation, and occurred at PAF concentrations of 10(-7) M and above. Both PKC and calcium-, phospholipid-independent protein kinase activities in whole particulate fractions were augmented by PAF as were both activities in detergent-extractable particulate subfractions. PAF did not directly activate PKC obtained from control or PMA-treated neutrophils. However, the PKC-enhancing effect of PAF was inhibited in the absence of calcium during cellular stimulation. PAF also increased particulate protein kinase activity in cells simultaneously exposed to FMLP but the effect was additive for these stimuli. These results suggest that PAF enhances PMA-induced particulate PKC activity by a calcium-dependent mechanism. The enhancing effect of PAF may be directly involved in the mechanism whereby the phospholipid "primes" neutrophils for augmented oxidative responses to PMA.  相似文献   

2.
The role of protein kinase C (PKC) on vasopressin (VP) action was investigated by inhibition of endogenous PKC using prolonged incubation of the cells with phorbol ester, and by direct measurement of PKC activity in pituitary cells. Preincubation of the cells for 6 h with 100 nM TPA at 37 C resulted in a 90% decrease in total PKC activity. In the PKC-depleted cells, cAMP responses to stimulation with 100 nM CRF for 30 min were normal, but the potentiating effects of VP and PMA on CRF-stimulated cAMP production were abolished. The stimulation of ACTH secretion by VP and PMA alone was also abolished in PKC- depleted cells. PKC activity in cytosolic and detergent-solubilized membrane fractions from enriched pituitary corticotrophs obtained by centrifugal elutriation, was directly measured by enzymatic assays and by immunoblotting techniques. Basal PKC activity was higher in the cytosol than in the membranes (8.43 +/- 0.47 and 1.93 +/- 0.11 pmol 32P incorporated/10 min, respectively). After incubation of the cells with VP for 15 min or [3H] phorbol-12-myristate-13-acetate (PMA) for 30 min, PKC activity in cytosol was decreased by 40% and 89%, respectively, while the activity in the membrane was increased by 138% and 405%, respectively. Such VP- and PMA-induced translocation of PKC was also observed when the enzyme content in the cytosol and the membranes was measured by immunoblotting using a specific anti-PKC antibody and [125I]protein A. Autoradiographic analysis of immunoblots revealed an 80 kilodalton band characteristic of PKC, with OD higher in the cytosolic than in the membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Normal human neutrophils were stimulated with the yeast cell wall product, zymosan, and examined for two biologic responses, ingestion of particles and production of leukotriene B4 (LTB4), under conditions that were comparable and optimal for the quantitation of each response. Monolayers of adherent neutrophils ingested unopsonized zymosan particles, at particle-to-cell ratios of 12.5:1 to 125:1, in a dose- and time-related manner. At a ratio of 125:1, the percentages of neutrophils ingesting greater than or equal to 1 and greater than or equal to 3 zymosan particles reached plateau levels of 55 +/- 6 and 32 +/- 9% (mean +/- SD, n = 8), respectively, within 30 min. At this same ratio, neutrophils during gravity sedimentation with zymosan particles synthesized LTB4 in a time-dependent manner for at least 45 min. The maximum amount of immunoreactive LTB4 released into supernatants was 3.8 +/- 1.2 ng per 10(6) neutrophils (mean +/- SD, n = 5) and the corresponding total immunoreactive LTB4 was 6.2 +/- 1.9 ng per 10(6) neutrophils. Treatment of 2 x 10(7) suspended neutrophils with 250 micrograms of trypsin for 20 min before concurrent assessment of neutrophil phagocytosis and LTB4 production reduced both of these responses by about 50%. Pretreatment of neutrophils with 800 micrograms/ml of soluble yeast beta-glucan inhibited their ingestion of zymosan by 84% (mean +/- SD, n = 3), with 50% inhibition occurring with 100 micrograms/ml of soluble beta-glucan; 800 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. Pretreatment of neutrophils with 400 micrograms/ml of soluble yeast beta-glucan inhibited neutrophil synthesis of LTB4 by 90%, with 50% occurring with 200 micrograms/ml; 400 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. The presence of 1.25 micrograms/ml of cytochalasin B during incubation with zymosan particles reduced neutrophil phagocytosis from 65 to 6%, and neutrophil synthesis of LTB4 from total levels of 6.0 +/- 0.3 ng/10(6) cells to zero (mean +/- SD, n = 3). Pretreatment with either cytochalasin B or vinblastine did not alter neutrophil generation of LTB4 induced by calcium ionophore. Neutrophils pretreated with vinblastine, at 4 x 10(-6) to 4 x 10(-4) M, and then maintained at one-half these concentrations during incubation with unopsonized zymosan particles exhibited no diminution in particle ingestion, but were markedly reduced in zymosan-induced synthesis of LTB4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In this study we examined the effects of insulin on protein kinase C (PKC) activity in cultured fetal chick neurons. PKC activity, measured as 32P incorporation into histone H1 in the presence of calcium (500 microM), phosphatidylserine (100 micrograms/ml), and diolein (3.3 micrograms/ml) minus the incorporation in the presence of calcium alone, was detected in neuronal cytosolic (207 +/- 33 pmol/min/mg) and membrane (33 +/- 8 pmol/min/mg) fractions. Insulin added to intact neurons increased the activity of PKC in both cytosolic and membrane fractions by about 40%. Neurons preincubated with cycloheximide (10 micrograms/ml) 30 min prior to insulin treatment showed the same degree of stimulation of PKC activity by insulin. The activation of PKC was maximal within 5-10 min of insulin exposure and was sustained for at least 60 min. Insulin stimulated PKC in a dose-dependent manner, with a maximal response obtained at 100 ng/ml. Addition of phosphatidylserine and diolein to neuronal cell extracts resulted in the phosphorylation of four major cytosolic proteins (70, 57, 18, and 16 kDa) and one major membrane protein (75 kDa). Phosphorylation of all five proteins was increased 2-fold in extracts from insulin-treated neurons. Immunoblot analysis of whole cell extracts using antibodies against PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon revealed that cultured fetal chick neurons contained only one of these PKC isoforms, the epsilon-isoform. The enzyme was mostly cytosolic. Insulin had no effect on either the amount of distribution of PKC-epsilon in cultured neurons but induced a small change in the mobility of PKC-epsilon on sodium dodecyl sulfate-polyacrylamide gels. When assay conditions were designed to measure specifically the activity of PKC-epsilon, using a synthetic peptide substrate in the absence of calcium, activity was 50 +/- 12% higher in insulin-treated cells (p less than 0.005). PKC activity in control and insulin treated-neurons was almost completely inhibited when assays included a peptide identical to the pseudo-substrate binding site of PKC-epsilon. We conclude that PKC-epsilon is the major PKC isoform present in cultured fetal chick neurons. Insulin stimulates PKC-epsilon activity by a mechanism that does not involve translocation of the enzyme from cytosol to membrane.  相似文献   

5.
We have characterized the GTPase activity of the Ni-like guanine-nucleotide-binding regulatory protein in rabbit neutrophil plasma membranes. The low Km (3.64 +/- 0.87 X 10(-7) M) GTPase copurified with the formyl peptide receptor in the plasma membrane fraction obtained by discontinuous sucrose density gradient centrifugation. The Vmax (23.9 +/- 2.91 pmol/mg/min) and Km of the unstimulated enzyme were similar to those reported for Ni in other cell types. The activity of the unstimulated enzyme was both magnesium and sodium dependent and linear over the first 4 min of the assay. The chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP), C5a, and leukotriene B4 (LTB4) stimulated the GTPase in purified neutrophil plasma membrane preparations, whereas other secretagogues, such as A23187 and PMA, were without effect. Lineweaver-Burk analysis showed an fMLP-induced increase in Vmax (31.94 +/- 4.80 pmol/mg/min) (33.1 +/- 9.5%) but not in Km. The dose-response curve for fMLP stimulation showed an ED50 of 4.1 +/- 1.0 X 10(-8) M and an overall 22.2 +/- 3.1% maximal stimulation. C5a (30 micrograms/ml) increased the activity of the GTPase 21.3 +/- 5.7% and 10(-7) M LTB4 produced a 32.2 +/- 5.4% increase. Activated pertussis toxin treatment of neutrophil plasma membranes inhibited by 72.5 +/- 14.3% the stimulation of GTPase activity induced by fMLP; however, activated cholera toxin had no effect on the inhibition of fMLP stimulation, suggesting a direct role for an Ni-like protein in the coupling process. In contrast to the lack of inhibition of fMLP stimulation by activated cholera toxin treatment of plasma membranes, both pertussis toxin and to a lesser extent cholera toxin treatment reduced fMLP, C5a, and LTB4 stimulation of the GTPase in sonicates prepared from pretreated whole cells. Pertussis toxin inhibited fMLP stimulation of the GTPase by 75 +/- 7%, C5a stimulation was inhibited by 83 +/- 13%, and LTB4 stimulation was inhibited completely. Sonicates prepared from neutrophils treated similarly with cholera toxin showed a smaller inhibition of GTPase activity (50 +/- 4% and 14 +/- 9% for fMLP and LTB4, respectively) with the exception of C5a, where CT inhibition (81 +/- 32%) equaled pertussis toxin inhibition. Similarly, pertussis toxin completely inhibited the release of the granule enzyme N-acetyl-glucosaminidase by all three chemoattractants, whereas cholera toxin, except with C5a stimulation, had little or no effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A plasma membrane fraction prepared from human neutrophils had a fluorescence resembling that of a fluorescent flavoprotein, with emission maximum near 520nm and excitation maxima near 380 and 460nm. The fluorescence emission and excitation properties of Triton N-101-solubilized membrane fraction resembled those of FAD. FAD was present in the membranes at a concentration of 417pmol/mg of protein and cytochrome b−245 at a concentration of 407pmol/mg of protein. In a 110-fold purified preparation of cytochrome b−245 the ratio of FAD:cytochrome b was 1:1. Analytical gradient centrifugation of neutrophil homogenates shows a coincidence of two cytochrome b peaks and two peaks of fluorescence, corresponding with plasma membrane and specific granule fractions; most of the FAD was non-fluorescent and located in fractions lighter than the plasma membrane. Plasma membrane fractions prepared from neutrophils of patients suffering from the X-linked form of chronic granulomatous disease lacked cytochrome b and contained 194pmol of FAD/mg of protein; plasma membrane fractions prepared from neutrophils of patients with the autosomal recessive form of chronic granulomatous disease contained both cytochrome b−245 and FAD in the normal range of concentrations in a ratio of 1:1. Phagocytic vesicles were prepared from normal neutrophils and found to contain FAD and cytochrome b in a ratio 2.22:1, suggesting that activation of neutrophils many involve the incorporation of an additional flavin into the membrane. Under anaerobic conditions in the presence of EDTA to act as an electron donor to a flavin, the cytochrome b−245 of neutrophil membranes was partly (12%) photoreducible, an effect increased to 100% by the addition of FMN. The extent of reduction of cytochrome b in an anaerobic neutrophil homogenate containing NADH increased from 30% to 70% on illumination. We suggest that these results indicate a close association between FAD and cytochrome b−245 and support a scheme for electron transport thus: [Formula: see text]  相似文献   

7.
In this study, the underlying mechanisms of stimulation by cyclocommunin, a natural pyranoflavonoid, of respiratory burst in rat neutrophils was investigated. Cyclocommunin evoked a concentration-dependent stimulation of superoxide anion (O2*-) generation with a slow onset and long lasting profile. The maximum response (16.4+/-2.3 nmol O2*-/10 min per 10(6) cells) was observed at 3-10 microM cyclocommunin. Cyclocommunin did not activate NADPH oxidase in a cell-free system. Cells pretreated with pertussis toxin or n-butanol did not affect the cyclocommunin-induced O2*- generation. However, a protein kinase inhibitor staurosporine and EGTA greatly reduced the O2*-generation caused by cyclocommunin. Treatment of neutrophils with phorbol 12-myristate 13-acetate (PMA), but not with formylmethionyl-leucyl-phenylalanine (fMLP), for 20 min significantly reduced the O2*- generation following the subsequent stimulation of cells with cyclocommunin. Cyclocommunin did not affect the cellular mass of phosphatidic acid (PA). Neither the tyrosine kinase inhibitor, genistein, nor the p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, affected cyclocommunin-induced O2*- generation. The enzyme activities of neutrophil cytosolic and membrane-associated protein kinase C (PKC) were both increased significantly with 100 microM cyclocommunin. The membrane-associated PKC-theta and PKC-beta were increased following the stimulation of neutrophils with 30 and 100 microM cyclocommunin, respectively. Cyclocommunin reduced the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to cytosolic PKC in a concentration-dependent manner. Cyclocommunin (> or =3 microM) significantly evoked a slow and long lasting [Ca2+]i elevation in neutrophils, and a phospholipase C (PLC) inhibitor U73122 greatly inhibited these Ca2+ responses. Moreover, the increase in cellular inositol bis- and trisphosphate (IP2 and IP3) levels were observed in neutrophils stimulated with 30 microM cyclocommunin for 3 min. Collectively, these results indicate that the stimulation of respiratory burst by cyclocommunin is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.  相似文献   

8.
The granule proteases of human neutrophils are thought to be responsible for the connective tissue destruction associated with certain inflammatory diseases. Using a model system for the degradation of a macromolecular connective tissue substrate, purified neutrophil elastase and cathepsin G were both individually able to degrade cartilage matrix proteoglycan and this degradation was blocked by the appropriate specific inhibitors. Neutrophil granule lysate also produced cartilage matrix degradation but little inhibition of degradation occurred when either elastase or cathepsin G inhibitor was used alone. However, a combination of elastase and cathepsin G inhibitors each at 100 microM or each at 10 microM blocked cartilage matrix degradation by 89% +/- 1 and 65% +/- 9 (mean +/- SEM, n = 3), respectively. The magnitude of the cartilage degradation mediated by neutrophil lysate, and its sensitivity to specific inhibitors, was reproduced using purified elastase and cathepsin G at the concentrations at which they are present in neutrophil lysate. Human neutrophils stimulated with opsonized zymosan degraded cartilage matrix in a dose-dependent manner in the presence of serum antiproteases. Supernatants from stimulated neutrophils cultured in the presence of serum did not degrade cartilage matrix, indicating that neutrophil mediated degradation in the presence of serum was confined to the protected subjacent region between the inflammatory cell and the substratum. A combination of elastase and cathepsin G inhibitors each at 500 microM or each at 100 microM blocked subjacent cartilage matrix degradation by stimulated human neutrophils by 91% +/- 3 and 54% +/- 8 (mean +/- SEM, n = 5), respectively, whereas either the elastase or cathepsin G inhibitor alone was much less effective. These studies demonstrate that neutrophil-mediated cartilage matrix degradation is produced primarily by elastase and cathepsin G. Furthermore, these results support the hypothesis that inflammatory neutrophils form zones of close contact with substratum that exclude serum antiproteases and that this subjacent degradation of cartilage matrix by stimulated neutrophils can be blocked by a combination of synthetic elastase and cathepsin G inhibitors.  相似文献   

9.
Protein kinase C (PKC) from bovine neutrophils was purified 1420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. The purification procedure from cytosol involved sequential chromatographic steps on DE-52 cellulose, Mono Q, and phenyl-Sepharose. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By filtration on Sephadex G-150, a molecular weight of 85,000 was calculated, indicating that bovine neutrophil PKC in solution is monomeric. Its isoelectric point was 5.9 +/- 0.1. Bovine neutrophil PKC was autophosphorylated in the presence of [gamma-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000, which was abundant in the cytosolic fraction of the homogenate, was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [gamma-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
gamma-Hexachlorocyclohexane was found to exert profound effects on the phosphatidylinositol cycle, cytosolic calcium level, and the respiratory burst of human neutrophils. Exposure of neutrophils prelabelled with 32P to 4 X 10(-4) M gamma-hexachlorocyclohexane almost tripled radioactivity in phosphatidic acid and correspondingly decreased radioactivity in phosphatidylinositol 4,5 bisphosphate. Under similar conditions, gamma-hexachlorocyclohexane evoked the generation of superoxide at a rate of over 11 nmol/min/10(6) cells and more than doubled cytosolic-free calcium concentration as monitored by Quin-2 fluorescence. Because intermediates of the phosphatidylinositol cycle, via increases in available calcium levels or activated protein kinase C, are considered potential second messengers for activation of the NADPH-dependent O-2-generating system, we compared neutrophil responses to gamma-hexachlorocyclohexane with responses to phorbol myristate acetate, an activator of protein kinase C with well known effects on neutrophils. Like phorbol myristate acetate, gamma-hexachlorocyclohexane induced neutrophil degranulation but was not an effective chemotactic stimulus. The ability of gamma-hexachlorocyclohexane to induce a pattern of oxidative activation in neutrophil cytoplasts similar to that in intact cells indicated that concurrent degranulation was not required for sustained O-2 generation in response to this agent. When neutrophils or neutrophil cytoplasts exposed to gamma-hexachlorocyclohexane were centrifuged and resuspended in stimulus-free medium, O-2 generation ceased entirely but could be reinitiated by addition of the same stimulus. This finding was in contrast to the continued O-2 production by phorbol myristate acetate-stimulated neutrophils similarly washed and resuspended in stimulus-free medium. Unlike subcellular fractions of phorbol myristate acetate-stimulated neutrophils, corresponding fractions prepared from gamma-hexachlorocyclohexane-stimulated neutrophils contained almost no detectable NADPH-dependent O-2-generating activity. Subcellular oxidase activity was not recovered when cells and membrane fractions were continuously exposed to gamma-hexachlorocyclohexane during disruption and fractionation after cell stimulation, nor could it be induced by the addition of the stimulus to the subcellular fractions. Thus, the stimulus dependence of continuous neutrophil superoxide release evoked by gamma-hexachlorocyclohexane does not merely reflect a physical interaction of the agonist with the enzyme system involved.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
p-nitrophenyl phosphatase activity is high in porcine neutrophils and was found in plasma membrane and granule fractions isolated from sucrose density gradients after nitrogen cavitation to disrupt the cells. Very little activity was found in the cytosol. The enzyme has optimum activity at alkaline pHs with a pH optimum of 10.3. The pH profile was fairly broad with activity still remaining at physiological pH. Orthovanadate was shown to be a potent competitive inhibitor of the enzyme with a Ki of 14 microM. Phosphate also inhibited but at millimolar concentrations and the two inhibitors bind in a mutually exclusive fashion. Evidence from experiments using divalent ion chelators and zinc ions suggested that the phosphatase is a zinc metalloenzyme. Beryllium was found to be a very potent, non-competitive inhibitor of the neutrophil enzyme (Ki = 1.1 microM). Levamisole and theophylline were both shown to be uncompetitive inhibitors of the porcine phosphatase (Ki = 0.2 mM and 1.2 mM respectively). The neutrophil phosphatase was inhibited by L-homoarginine but unaffected by L-phenylalanine and L-glutamate.  相似文献   

12.
Myeloid-related protein-14 is a p38 MAPK substrate in human neutrophils   总被引:1,自引:0,他引:1  
The targets of the p38 MAPK pathway that mediate neutrophil functional responses are largely unknown. To identify p38 MAPK targets, a proteomic approach was applied in which recombinant active p38 MAPK and [(32)P]ATP were added to lysates from unstimulated human neutrophils. Proteins were separated by two-dimensional gel electrophoresis, and phosphoproteins were visualized by autoradiography and identified by MALDI-TOF. Myeloid-related protein-14 (MRP-14) was identified as a candidate p38 MAPK substrate. MRP-14 phosphorylation by p38 MAPK was confirmed by an in vitro kinase reaction using purified MRP-14/MRP-8 complexes. The site of MRP-14 phosphorylation by p38 MAPK was identified by tandem mass spectrometry and site-directed mutagenesis to be Thr(113). MRP-14 phosphorylation by p38 MAPK in intact neutrophils was confirmed by [(32)P]orthophosphate loading, followed by fMLP stimulation in the presence and absence of a p38 MAPK inhibitor, SB203580. Confocal microscopy of Triton X-100 permeabilized neutrophils showed that a small amount of MRP-14 was associated with cortical F-actin in unstimulated cells. fMLP stimulation resulted in a p38 MAPK-dependent increase in MRP-14 staining at the base of lamellipodia. By immunoblot analysis, MRP-14 was present in plasma membrane/secretory vesicle fractions and gelatinase and specific granules, but not in azurophil granules. The amount of MRP-14 associated with plasma membrane/secretory vesicle and gelatinase granule fractions increased after fMLP stimulation in a p38 MAPK-dependent manner. Direct phosphorylation of the MRP-14/MRP-8 complex by p38 MAPK increased actin binding in vitro by 2-fold. These results indicate that MRP-14 is a potential mediator of p38 MAPK-dependent functional responses in human neutrophils.  相似文献   

13.
Adenosine transporters in freshly isolated and cultured chromaffin cells were quantified by the [3H]dipyridamole binding technique, showing a maximal bound capacity of 0.4 +/- 0.05 pmol/10(6) cells (240,000 +/- 20,000 transporters by cell). Scatchard analysis showed a similar affinity for [3H]dipyridamole in isolated cells and subcellular fractions (Kd = 5 +/- 0.6 nM). For enriched plasma membrane preparations and chromaffin granule membranes, the maximal binding capacities were also very similar, 2.3 +/- 0.3 and 1.8 +/- 0.4 pmol/mg protein, respectively. When [3H]nitrobenzylthioinosine was employed as a radioligand, the maximal bound capacity in cultured chromaffin cells was 0.053 +/- 0.004 pmol/10(6) cells (32,000 +/- 3000 transporters per cell) with a high affinity constant (Kd = 0.25 +/- 0.03 nM); similar values were obtained in all subcellular fractions (Kd = 0.1 +/- 0.01). Also, plasma and chromaffin granule membranes showed similar maximal binding values (0.4 +/- 0.06 pmol/mg protein). Photoincorporation studies with [3H]nitrobenzylthioinosine into plasma membrane polypeptides showed the presence of three molecular species of 115 +/- 10; 58 +/- 6 and 42 +/- 5 kDa. Chromaffin granule membranes showed only the 105 +/- 9 and 51 +/- 4 molecular species.  相似文献   

14.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

15.
Two species of platelet-activating factor (PAF), 1-hexadecyl- and 1-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16 = 0 AGEPC and C18 = 0 AGEPC) were detected in ionophore A23187-stimulated human neutrophils. The amount of AGEPC in 1 x 10(7) neutrophil cells was 80 +/- 26 pmol (mean +/- standard error) with a range of 14 to 223 pmol (n = 8), and it consisted of 80% of the C16 = 0 species and 20% of the C18 = 0 species. Most of the AGEPC derived from ionophore-treated neutrophils remained cell associated rather than being secreted into the medium, even when the medium contained ample albumin protein, which can trap AGEPC. These results were obtained by a technique of gas chromatography-mass spectrometry coupled with selected ion monitoring.  相似文献   

16.
-Tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with -tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2 × 106 cells. A saturating dose of TS (40 μmol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 μmol/l), and much more than Trolox (40 μmol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of -tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that -tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.  相似文献   

17.
Human polymorphonuclear neutrophils, monocytes, and lymphocytes were studied for their ability to synthesize Paf-acether when stimulated with the ionophore A 23187 (Io) or with specific secretagogues. When stimulated with Io, neutrophils produced 100 +/- 8.5 pmol Paf-acether 1 X 10(6) cells (mean +/- 1 SD, n = 5); monocytes were less efficient (44 +/- 3.3 pmol Paf-acether/1 X 10(6) cells), whereas lymphocytes were practically unable to form this mediator (1.0 +/- 0.4 pmol Paf-acether/1 X 10(6) cells). Neutrophils and monocytes released in the extracellular medium 49 and 37% of Paf-acether that they formed, respectively. We attempted to correlate the amount of Paf-acether produced by the various cell types with that of its precursors, 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine and 1-O-alkyl-sn-glycero-3-phosphocholine (2-lyso Paf-acether). In the three cell types, the amount of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine was sufficient to ensure the formation of 2-lyso Paf-acether and consequently that of Paf-acether. The quantity of 2-lyso Paf-acether formed appeared to be the limiting factor only in the case of the neutrophils. These cells increased their synthesis of Paf-acether in the presence of exogenous 2-lyso Paf-acether. To investigate the failure of lymphocytes to produce the mediator, the acetylating step of Paf-acether formation was studied, and we found a very weak activity (0.5 +/- 0.1 nmol Paf-acether/10 min/mg protein) in this cell type as opposed to monocytes (4.0 +/- 2.3 nmol Paf-acether/10 min/mg protein) and neutrophils (17.8 +/- 5.3 nmol Paf-acether/10 min/mg protein). These activities were doubled in Io-stimulated cells. Thus, the modulation of acetyl-transferase activity appears to be a key step in the regulation of Paf-acether biosynthesis. Also, the availability of 2-lyso Paf-acether could regulate Paf-acether synthesis in human neutrophils.  相似文献   

18.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

19.
Guinea pig neutrophils contain membrane-bound and soluble phosphatases that catalyze the dephosphorylation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]. The activities were 5.1 +/- 0.2 and 1.3 +/- 0.2 (SD; n = 5) nmoles phosphate (Pi) released/min/10(7) cell equivalents, respectively. The membrane-bound enzyme dephosphorylated many substrates (e.g., beta-glycerophosphate), exhibited alkaline pH optima, and was inhibited by levamisole. In contrast, the soluble phosphatase was specific for Ins(1,4,5)P3, exhibited a neutral pH optimum, and was insensitive to levamisole. A cerium-based ultrastructural cytochemical procedure was employed to identify the subcellular sites of the membrane-bound activity. Staining was observed on the exterior of the plasmalemma and in a population of granules. Staining in the granules was observed only in permeabilized cells. Treatment of neutrophils with p-diazobenzenesulfonate (DBSA) (4.0 mM) for 20 min at 37 degrees C blocked the cytochemical reaction on the cell surface using beta-glycerophosphate as the substrate, but did not affect the staining of the granules on subsequent permeabilization. In biochemical studies, this treatment with DBSA inhibited the membrane-bound activity by c. 50% but did not affect the soluble phosphatase. Therefore, the membrane-bound phosphatase is, in fact, an alkaline phosphatase that resides in locales not accessible to Ins(1,4,5)P3 generated during cell stimulation. Breakdown of Ins(1,4,5)P3 generated during cell stimulation, therefore, would be catalyzed by the soluble enzyme.  相似文献   

20.
Acyloxyacyl hydrolase (AOAH) is an enzyme of bovine polymorphonuclear neutrophil leukocytes (PMN) that is capable of detoxifying endotoxin (25). The activity of AOAH in PMN isolated from the blood was investigated in dairy cows that expelled the fetal membranes normally (Group NFM) and in cows with retained fetal membranes (Group RFM) to obtain better insight into the role of the AOAH enzyme of neutrophils in endotoxin-related diseases, which occur frequently in dairy cows during the early postpartum period, especially in RFM cows. Twenty early postpartum dairy cows were used in the study: 13 NFM cows and 7 RFM cows. In the RFM cows, the percentage of PMN in blood (29+/-4%) was significantly (P<0.05) lower than in NFM cows (43+/-4%). The average AOAH activity in RFM cows (mean +/- SEM = 89+/-13 pmol fatty acid/10(7) PMN/h) was lower than in NFM cows (107+/-6 pmol fatty acid/10(7) PMN/h), but the difference in neutrophil AOAH activity between the 2 groups was not significant. There was also a higher percentage of immature neutrophils in isolated leukocyte suspensions from RFM cows (22+/-8%) than from NFM cows (15+/-4%), so that impairment of AOAH activity in early postpartum cows could be explained, in part, by immaturity of the neutrophils. These results suggest that the decreased AOAH activity of PMN could play a role in the pathogenesis of endotoxin-related diseases in dairy cows during the early postpartum period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号