首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wilson's disease, an autosomal recessive disease of copper accumulation and copper toxicity primarily in the liver and brain, has been the engine that has driven the development of anticopper drugs. Here we first briefly review Wilson's disease, then review the four anticopper drugs used to treat Wilson's disease. We then discuss the results of therapy with anticopper drugs in Wilson's disease, with special emphasis on the newer and better drugs, zinc and tetrathiomolybdate. We then discuss new areas of anticopper therapy, lowering copper availability with tetrathiomolybdate as a therapy in fibrotic, inflammatory, and autoimmune disorders. Many of the cytokines which promote these disorders are copper dependent, and lowering copper availability lessens the activity of these cytokines, favorably influencing a variety of disease processes. Copper in the blood can be thought of as in two pools. One pool is covalently bound in ceruloplasmin, a protein containing six coppers, synthesized by the liver and secreted into the blood. Ceruloplasmin copper accounts for almost 85 to 90% of the blood copper in normal people. This copper is tightly bound and not readily available for cellular uptake and copper toxicity. The other 10-15% of copper is more loosely bound to albumin and other small molecules in the blood, and is readily and freely available to cells and available to cause copper toxicity, if this pool of copper is increased. We call this latter pool of copper "free" copper because of its more ready availability. However, it should be understood that it is not completely free, always being bound to albumin and other molecules. It is this pool of free copper that is greatly expanded in untreated Wilson's patients undergoing copper toxicity.  相似文献   

2.
Tetrathiomolybdate (TM) is a unique anticopper drug developed for the treatment of the neurologic presentation of Wilson's disease, for which it is excellent. Since it was known copper was required for angiogenesis, TM was tested on mouse cancer models to see if it would inhibit tumor growth based on an antiangiogenic effect. TM was extremely effective in these models, but all the tumors in the models started small in size – micrometastatic in size. Later, TM was tested in numerous human cancer trials, where it showed only modest effects. However, the mouse lesson of efficacy against micro disease was forgotten – all the trials were against bulky, advanced cancer. Now, the mouse evidence is coming back to life. Three groups are curing, or having major efficacy of TM, against advanced human cancers, heretofore virtually incurable, particularly if the cancer has been reduced to no evidence of disease (NED) status by conventional therapy. In that situation, where the remaining disease is micrometastatic, TM therapy appears to be curative. We have designed and initiated a study of TM in canine osteosarcoma at the micrometastatic phase to help put these findings on a firm scientific basis. TM also has major anti-inflammatory properties by inhibiting copper dependent cytokines involved in inflammation. This anti-inflammatory effect may be involved in TM's anticancer effect because cancers, as they advance, attract inflammatory cells that provide a plethora of additional proangiogenic agents.  相似文献   

3.
Tetrathiomolybdate (TM), a drug developed for Wilson's disease, produces an anti-angiogenic and anti-inflammatory effect by reducing systemic copper levels. TM therapy has proved effective in inhibiting the growth of tumors in animal tumor models and in cancer patients. We have hypothesized that TM may be used for the therapy of rheumatoid arthritis and have examined the efficacy of TM on adjuvant-induced arthritis in the rat, which is a model of acute inflammatory arthritis and inflammatory cachexia. TM delayed the onset of and suppressed the severity of clinical arthritis on both paw volume and the arthritis score. Histological examination demonstrated that TM significantly reduces the synovial hyperplasia and inflammatory cell invasion in joint tissues. Interestingly, TM can inhibit the expression of vascular endothelial growth factor in serum synovial tissues, especially in endothelial cells and macrophages. Moreover, the extent of pannus formation, which leads to bone destruction, is correlated with the content of vascular endothelial growth factor in the serum. There was no mortality in TM-treated rat abnormalities. TM also suppressed inflammatory cachexia. We suggest that copper deficiency induced by TM is a potent approach both to inhibit the progression of rheumatoid arthritis with minimal adverse effects and to improve the well-being of rheumatoid arthritis patients.  相似文献   

4.
Tetrathiomolybdate is an anticopper drug with a unique mechanism of action. Tetrathiomolybdate complexes copper to protein and itself, rendering the copper unavailable for cellular uptake. It was originally developed for Wilson's disease, and is now being developed as an antiangiogenic agent for the treatment of cancer. Many angiogenic cytokines require normal levels of copper, and lowered copper levels reduce cytokine signaling while cellular copper requirements are met. Cytokines of fibrosis and inflammation may be similarly copper dependent, since tetrathiomolybdate inhibits bleomycin induced pulmonary inflammation and fibrosis. The basis for this inhibition was evaluated here by examination of tetrathiomolybdate effects on cytokines in lung pathophysiologically important in the bleomycin mouse model of pulmonary damage. Results in mice injected endotracheally with bleomycin confirmed that tetrathiomolybdate therapy was effective in reducing fibrosis. This effect was associated with significant inhibition of bleomycin-induced tumor necrosis factor alpha and transforming growth factor beta expression in lung homogenates. These effects were shown to be independent of one another. This indicates that tetrathiomolybdate therapy can be effective even when fibrosis is at a more chronic stage, wherein inflammatory cytokines are playing a diminishing role. The inhibition of tumor necrosis factor alpha suggests that diseases of tumor necrosis factor alpha overexpression are also potential targets of tetrathiomolybdate therapy.  相似文献   

5.
There are several known examples of mutations which influence copper homeostasis in humans and animals. Pleiotropic effects are observed when the mutant gene disturbs copper flux. In some cases, the mutation alters the level of a specific copper ligand (enzyme) and the clinical consequences are unique. The two most widely studied genetic maladies in humans are Menkes' and Wilson's diseases. Menkes' disease is an X-linked fatal disorder in which copper accumulates in some organs (intestine and kidney) and is low in others (liver and brain). Wilson's disease is an autosomal recessive disorder in which copper accumulates, if untreated, in liver and subsequently in brain and kidney. Pathophysiological consequences of copper deficiency and toxicity characterize these two disorders. Specific mutations of human cuproenzymes include overproduction of copper-zinc superoxide dismutase in Down's syndrome, absence of tyrosinase in albinism, hereditary mitochondrial myopathy due to reduction in cytochrome c oxidase, and altered lysyl oxidase in X-linked forms of cutis laxa and Ehlers-Danlos syndrome. Mutations altering copper metabolism are also known in animals. Several murine mutants have been studied. The most extensively investigated mutants are the mottled mice, in particular brindled mice, which have a mutation analogous to that of Menkes' disease. Another recently described murine mutation is toxic milk (tx) an autosomal recessive disorder that is characterized by copper accumulation in liver. Two other mutants, crinkled and quaking, were once thought to exhibit abnormal copper metabolism. Recent data has not confirmed this. A mutation in Bedlington terriers has been described which is very similar to Wilson's disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Progress has been made in establishing the efficacy and safety of oral zinc as a maintenance therapy for Wilson's disease. It is important to develop simple, noninvasive monitoring methods to assure the adequacy of zinc therapy in individual patients. In this paper we report the use of 24-hr urine copper and plasma copper measurements to monitor efficacy of zinc maintenance therapy in 30 Wilson's disease patients. In examples of therapeutic inadequacy such as noncompliance, these values increase. With continued long-term adequate therapy, they remain stable or decrease. These two simple monitoring tools appear to be very useful in monitoring Wilson's disease patients receiving zinc therapy.  相似文献   

7.
Summary Recently, the Wilson's disease locus (WND) has been mapped to the long arm of chromosome 13. We have analyzed segregation of serveral chromosome 13 markers flanking the WND locus and used multipoint linkage analysis to determine the most likely WND genotype of each of 57 unaffected individuals in 5 Wilson's disease families. Approximately 46% of these could be classified as carrier (heterozygote), homozygous normal, or homozygous affected (not yet symptomatic) with a probability of at least 90%, while 77% could be classified with a probability of at least 80%. Our results demonstrate that even though there is a significant decrease on average in serum copper concentration in Wilson's disease heterozygotes compared to normal homozygotes, other sources of variation in serum copper concentration are much greater and preclude use of serum copper to detect heterozygotes for Wilson's disease. Subsequent analyses showed that a familial component, independent of WND genotype, is the major factor accounting for variation in ceruloplasmin levels among unaffected individuals; age is another factor accounting for more variation in copper levels among unaffected individuals than WND genotype.  相似文献   

8.
Wilson's disease is a rare genetic disorder of copper metabolism. The difference in copper tissue accumulation is responsible for the various clinical manifestations of this disorder. If left untreated, Wilson's disease progresses to hepatic failure, severe neurological disability, and even death. Due to the complex clinical picture of Wilson's disease, its diagnosis relies on a high index of suspicion. In our paper, we present endocrine symptoms suggesting the presence of insulinoma and hyperprolactinemia as the initial clinical manifestation of Wilson's disease in a young female. Zinc acetate treatment resulted in the disappearance of hypoglycemia, galactorrhea, and menstrual abnormalities.  相似文献   

9.
Copper is an essential trace element that plays a very important role in cell physiology. In humans, disruption of normal copper homeostasis leads to severe disorders, such as Menkes disease and Wilson's disease. Recent genetic, cell biological, and biochemical studies have begun to dissect the molecular mechanisms involved in transmembrane transport and intracellular distribution of copper in mammalian cells. In this review, we summarize the advances that have been made in understanding of structure, function, and regulation of the key human copper transporters, the Menkes disease and Wilson's disease proteins.  相似文献   

10.
Tetrathiomolybdate was originally developed for use in Wilson's disease. However, lowering copper levels to below normal levels with tetrathiomolybdate has been found to have efficacy in cancer, probably by turning down signaling by angiogenic cytokines. More recently, we have shown in animals models that tetrathiomolybdate dramatically inhibits pulmonary and liver fibrosis. In other animal models, we have shown that the drug also inhibits liver damage from concanavalin A and acetaminophen, and heart damage from doxorubicin. These studies are briefly reviewed, and we then present data on tetrathiomolybdate's partially protective effect against diabetes in non-obese diabetic mice, an autoimmune model of type I diabetes. Possible mechanisms of tetrathiomolybdate's protective effect are briefly considered.  相似文献   

11.
Recognition, diagnosis, and management of Wilson's disease   总被引:14,自引:0,他引:14  
Wilson's disease is a relatively rare inherited disorder of copper accumulation and toxicity, caused by a defect in an enzyme that is part of the pathway of biliary excretion of excess copper. Clinically, patients usually present as older children or young adults with hepatic, neurologic, or psychiatric manifestations, or some combination of these. Wilson's disease is unusual among genetic diseases in that it can be very effectively treated. The prevention of severe permanent damage depends upon early recognition and diagnosis by the physician, followed by appropriate anticopper treatment. Anticopper treatments have evolved considerably since the days when the only drug available was penicillamine. Zinc is now the recommended therapy for long-term management of the disease.  相似文献   

12.
X-linked inhibitor of apoptosis (XIAP), traditionally known as an anti-apoptotic protein, has recently been shown to be involved in copper homeostasis. XIAP promotes the ubiquitination and degradation of COMMD1, a protein that promotes the efflux of copper from the cell. Through its effects on COMMD1, XIAP can regulate copper export from the cell and potentially represents an additional intracellular sensor for copper levels. XIAP binds copper directly and undergoes a substantial conformational change in the copper-bound state. This in turn destabilizes XIAP, resulting in lowered steady-state levels of the protein. Furthermore, copper-bound XIAP is unable to inhibit caspases and cells that express this form of the protein exhibit increased rates of cell death in response to apoptotic stimuli. These events take place in the setting of excess intracellular copper accumulation as seen in copper toxicosis disorders such as Wilson's disease and establish a new relationship between copper levels and the regulation of cell death via XIAP. These findings raise important questions about the role of XIAP in the development of copper toxicosis disorders and may point to XIAP as a potential therapeutic target in these disease states.  相似文献   

13.
14.
The involvement of body copper metabolism in the development of Alzheimer's disease (AD) - the most common form of dementia - is a deeply investigated issue in recent years. Copper is essential for life, but in excess it can be toxic. Recently, it has been hypothesized that copper toxicity may be a contributory factor in the etiology of the neurodegenerative disease AD. Studies on copper evaluation in AD vs. healthy controls collected in the latest 30 years and merged in a meta-analysis demonstrate that serum copper is slightly increased in AD. A specific form of copper, the copper non-bound to ceruloplasmin, or 'free' copper, seems to best characterize this increase in copper in AD patients. Clinical studies from us and other groups have demonstrated that free copper is associated with the typical deficits of AD, incipient AD and mild cognitive impairment, and specific cerebrospinal markers. Moreover, very recent data addressing molecular processes underlying copper dysfunction in AD have indicated that genetic variations of K832R and R952K Single Nucleotide Polymorphisms (SNPs) of the Wilson's disease gene ATP7B are associated also with sporadic AD. Specifically, ATP7B encodes for the protein ATPase 7B which controls free copper status in the body, and both R allele in K832R and K allele in R952K ATP7B SNPs are associated with an increased risk of having AD. Even though copper dysfunction cannot be assumed as a determinant of the disease, its causative, rather than associated, role in AD pathology as risk factor can be claimed.  相似文献   

15.
Copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in the ATP7B gene lead to copper accumulation in a number of tissues and to a severe multisystem disorder, known as Wilson's disease. Primary sequence analysis suggests that the copper-transporting ATPase ATP7B or the Wilson's disease protein (WNDP) belongs to the large family of cation-transporting P-type ATPases, however, the detailed characterization of its enzymatic properties has been lacking. Here, we developed a baculovirus-mediated expression system for WNDP, which permits direct and quantitative analysis of catalytic properties of this protein. Using this system, we provide experimental evidence that WNDP has functional properties characteristic of a P-type ATPase. It forms a phosphorylated intermediate, which is sensitive to hydroxylamine, basic pH, and treatments with ATP or ADP. ATP stimulates phosphorylation with an apparent K(m) of 0.95 +/- 0.25 microm; ADP promotes dephosphorylation with an apparent K(m) of 3.2 +/- 0.7 microm. Replacement of Asp(1027) with Ala in a conserved sequence motif DKTG abolishes phosphorylation in agreement with the proposed role of this residue as an acceptor of phosphate during the catalytic cycle. Catalytic phosphorylation of WNDP is inhibited by the copper chelator bathocuproine; copper reactivates the bathocuproine-treated WNDP in a specific and cooperative fashion confirming that copper is required for formation of the acylphosphate intermediate. These studies establish the key catalytic properties of the ATP7B copper-transporting ATPase and provide a foundation for quantitative analysis of its function in normal and diseased cells.  相似文献   

16.
X-linked inhibitor of apoptosis (XIAP), known primarily for its caspase inhibitory properties, has recently been shown to interact with and regulate the levels of COMMD1, a protein associated with a form of canine copper toxicosis. Here, we describe a role for XIAP in copper metabolism. We find that XIAP levels are greatly reduced by intracellular copper accumulation in Wilson's disease and other copper toxicosis disorders and in cells cultured under high copper conditions. Elevated copper levels result in a profound, reversible conformational change in XIAP due to the direct binding of copper to XIAP, which accelerates its degradation and significantly decreases its ability to inhibit caspase-3. This results in a lowering of the apoptotic threshold, sensitizing the cell to apoptosis. These data provide an unsuspected link between copper homeostasis and the regulation of cell death through XIAP and may contribute to the pathophysiology of copper toxicosis disorders.  相似文献   

17.
Untreated Wilson's disease usually causes infertility or abortion, as a result of increased intrauterine copper level. Therefore, a chelation treatment is necessary during the whole pregnancy. The most used is D-Penicillamine whose teratogenic risks such as cutis laxa, dermatopathy or complex mesenchyme abnormalities are paradoxically rare in the new borns of treated Wilson's disease mothers, perhaps owing to hypercupremia that protects the foetus from excessive copper deficiency. Yet, it's wise to reduce chelation treatment about a quarter fold and to add 50 mg vitamin B6 weekly as we did in our case whose child was born normal.  相似文献   

18.
Complex formation between D-penicillamine (Pen) and copper(II) ions has been studied under simulated physiological conditions in both the presence and absence of the blood plasma constituents albumin, alanine, histidine, and zinc(II). Chromatographic and uv/vis and electron spin resonance (esr) spectroscopic methods were used. The major species formed, at neutral pH and 0.15 mol dm-3 NaCl, is the violet species which is shown to have the same stoichiometry as the recently reported solid-state complex, i.e., [Cu8I Cu6II (Pen)12 Cl] 5-. The rate of formation of this species (MVC) is shown to be dependent on the Cu concentration, Cu:Pen ratio, relative Cl- ion concentration, pH, and temperature. Formation is inhibited by the presence of O2 and biological chelates. At the concentration levels found in blood plasma it is unlikely that the MVC ion has any significance in the therapeutic action of penicillamine in the treatment of Wilson's disease. Reexamination of the aqueous Cu-albumin-pen system reinforces earlier findings that pen is unable to mobilize Cu that is bound to albumin. Significant binding of pen to the protein is observed is not related to any protein-bound copper ions. Evidence that ternary complexes of the type amino acid-Cu-Pen can form in blood plasma is presented. These are unlikely, however, to be physiologically significant and the copper depletion induced by Pen in Wilson's disease cases must be elsewhere than in the blood plasma compartment.  相似文献   

19.
Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. However, the mechanism of biliary copper excretion has not been fully clarified. We examined the effect of copper on the intracellular localization of the Wilson disease gene product (ATP7B) and green fluorescent protein (GFP)-tagged ATP7B in a human hepatoma cell line (Huh7). The intracellular organelles were visualized by fluorescence microscopy. GFP-ATP7B colocalized with late endosome markers, but not with endoplasmic reticulum, Golgi, or lysosome markers in both the steady and copper-loaded states. ATP7B mainly localized at the perinuclear regions in both states. These results suggest that the main localization of ATP7B is in the late endosomes in both the steady and copper-loaded states. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.  相似文献   

20.
Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson's disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号