首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Monoclonal antibody recognition of abscisic Acid analogs   总被引:8,自引:4,他引:4       下载免费PDF全文
Specificities of three monoclonal antibodies (15-I-C5, DBPA 1, and MAC 62) raised against the plant hormone (S)-(+)-abscisic acid (ABA) have been compared. Immunological cross-reactivities against fifteen biologically active analogs of ABA were measured. The ABA analogs were altered at one or more of four positions: the double bonds in the ring, at C-2 C-3 and at C-4 C-5, and in the oxidation level at C-1. Several analogs were optically active with chiral centers at C-1′ and C-2′. For cross-reactivity, all three monoclonal antibodies required the carboxylic acid group, and the cis configuration of the double bond at C-2 C-3 of the ABA molecule. Monoclonals 15-I-C5 and DBPA 1 required the entire ABA sidechain from the C-1 to C-1′, but these monoclonals did cross-react with analogs with the ring double bond reduced and the C-2′ methyl cis to the sidechain. Only MAC 62 recognized analogs containing an acetylene at C-4 C-5. MAC 62 had more strict requirements for the ring double bond, but gave some cross-reactivity with acetylenic analogs having a saturated ring. All three monoclonals had higher specificity for analogs having the same absolute configuration at C-1′ as (S)-(+)-ABA. This work provides new information about the spatial regions of the ABA molecule that elicit immunological recognition, and serves as a basis for future investigations of the ABA receptor using ABA analogs and anti-idiotypic antibodies.  相似文献   

2.
We report an examination of the structural requirements of the abscisic acid (ABA) recognition response in wheat dormant seed embryos using optically pure isomers of ABA analogs. These compounds include permutations to the ABA structure with either an acetylene or a trans bond at C-4 C-5, and either a single or double bond at the C-2′ C-3′ double bond. (R)-ABA and the three isomers with the same configuration at C-1′ as natural ABA were found to be effective germination inhibitors. The biologically active ABA analogs exhibited differential effects on ABA-responsive gene expression. All the ABA analogs that inhibited germination induced two ABA-responsive genes, wheat group 3 lea and dhn (rab). However, (R)-ABA and (S)-dihydroABA were less effective in inducing the ABA-responsive gene Em within the time that embryonic germination was inhibited.  相似文献   

3.
The ability of abscisic acid (ABA) and abscisic acid analogs to induce freezing tolerance in fall rye (Secale cereale cv Puma) seedlings grown at nonhardening temperatures was investigated. Analogs were constructed with systematic alterations at C-1 (acid replaced with methyl ester, aldehyde or alcohol), at C-4, C-5 (trans double bond replaced with a triple bond), and at C-2, C-3 (double bond replaced with a single bond so that the side chain and C-2 methyl groups were cis). Freezing tolerance (LT50) was determined 3, 4 and 6 days after the first of two consecutive applications of chemical (100 µM) to either the leaves or roots. All analogs were more effective when applied to the plant roots than when applied to the leaves. ABA, acetylenic ABA and 2,3-dihydroacetylenic ABA decreased the LT50 from –3 °C (control) to –9 °C. Consistent structure-activity relationships were only detected following root application. No single functional group altered was absolutely required for activity. The effect of any given change to the molecule was modified by the presence of other functional groups. For example, substituting the double bond in the ring with a single bond decreased activity, but concomitant substitution of the trans double bond in the side chain with a triple bond restored activity. In general, analogs with a cis, trans side chain were more active initially but rapidly lost activity, whereas acetylenic analogs maintained or gained activity over the three sampling times. The application of gibberellin biosynthesis inhibitors (100 µM; tetcyclacis or mefluidide) did not increase freezing tolerance beyond that induced by ABA, either alone or in combination with ABA. It can be concluded that ABA and certain ABA analogs can induce limited freezing tolerance in whole rye seedlings, and partially substitute for low temperature acclimation.  相似文献   

4.
Eubacterium lentum (33 strains) isomerized the 12-cis double bond of C18 fatty acids with cis double bonds at C-9 and C-12 into an 11-trans double bond before reduction of the 9-cis double bond. The 14-cis double bond of homo-γ-linolenic acid was isomerized by 29 strains into a 13-trans double bond. The same strains isomerized the 14-cis double bond of arachidonic acid into a 13-trans double bond and then isomerized the 8-cis double bond into a 7-trans double bond; the 13-cis double bond of 10-cis, 13-cis-nonadecadienoic acid was isomerized into a 12-trans double bond. None of these isomerization products was further reduced. Studies with resting cells showed optimal isomerization velocity at a linoleic acid concentration of 37.5 μM; higher concentrations were inhibitory. The pH optimum for isomerization was 7.5 to 8.5. The isomerase was inhibited by the sulfhydryl reagents iodoacetamide, bromoacetate, and N-ethylmaleimide and by the chelators EDTA and 1,10-phenanthroline.  相似文献   

5.
Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.  相似文献   

6.
1. Rhodesian copalwood (Guibourtia coleosperma) contains three diastereo-isomeric leuco-fisetinidins. These consist of the (−)-2,3-cis–3,4-cis (2R,3R,4R) and (−)-2,3-cis–3,4-trans (2R,3R,4S) 3′,4′,7-trihydroxyflavan-3,4-diols, and the third was shown to be a 2,3-trans–3,4-cis isomer by means of paper ionophoresis. 2. There occurrence in similar proportions as tannin precursors also in the tropical hardwoods G. tessmannii and G. demeusii implies a close taxonomic relationship between these, and with G. coleosperma. 3. Epimerization of the natural (−)-3′,4′,7- trihydroxy-2,3-trans-flavan-3,4-trans-diol affords a mixture from which the (−)-2,3-cis–3,4-cis isomer was separated readily, but the (−)-2,3-trans–3,4-cis isomer was obtained with difficulty. These were formed by epimerization of the (−)-2,3-trans–3,4-trans isomer at C-2 and C-4, and at C-4, respectively.  相似文献   

7.
Geometric and position isomers of zeatin and of ribosylzeatin and other compounds closely related to zeatin have been tested in the tobacco (Nicotiana tabacum var. Wisconsin No. 38) bioassay. None was more active than zeatin itself. There was a much greater difference in activity (> 50-fold) between trans- and cis-zeatin than between trans-isozeatin [6-(4-hydroxy-2-methyl-trans-2-butenylamino) purine] and cis-isozeatin [6-(4-hydroxy-2-methyl-cis-2-butenylamino) purine], the latter being less active than cis-zeatin and trans-isozeatin. Higher concentrations were required for equivalent callus growth stimulated by the 9-ribosyl derivatives, which followed an order of decreasing activity: ribosyl-trans-zeatin > ribosyl-cis-zeatin > ribosyl-trans-isozeatin > ribosyl-cis-isozeatin, corresponding roughly to that of the bases. The effect of side chain, double bond saturation was to diminish the activity, and in the dihydro series the shift of the methyl group from the 3- to the 2-position in going from dihydrozeatin to dihydroisozeatin [6-(4-hydroxy-2-methylbutylamino) purine] resulted in a 70-fold decrease in activity. cis-Norzeatin [6-(4-hydroxy-cis-2-butenylamino) purine], which was less than one-fifth as active as cis-zeatin, showed the effect of complete removal of the side chain methyl group, and cyclic-norzeatin [6-(3,6-dihydro-1,2-oxazin-2-yl) purine] was about 1/100 as active as cis-norzeatin. These findings delineate completely the effect on the cytokinin activity of zeatin of variation in side chain geometry, presence and position of the methyl substituent, presence and geometry of hydroxyl substitution, presence of the double bond, and of side chain cyclization.  相似文献   

8.
1. (+)-Mollisacacidin [(+)-3′,4′,7-trihydroxy-2,3-trans-flavan-3,4-trans- diol] is converted by autoclaving into the optically active free phenolic 2,3-trans-3-4-cis (12% yield), 2,3-cis-3,4-trans (11%) and 2,3-cis-3,4-cis (2·8%) diastereoisomers through epimerization at C-2 and C-4. 2. The relative configurations of the epimeric forms were determined by nuclear-magnetic-resonance spectrometry and paper ionophoresis in comparison with synthetic reference compounds, and was confirmed by chemical interconversions. 3. From this a scheme of epimerization is inferred and their absolute configurations are assigned as (2R:3S:4S), (2S:3S:4R) and (2S:3S:4S) respectively from the known absolute configuration (2R:3S:4R) of (+)-mollisacacidin.  相似文献   

9.
Extracts prepared from the turgid and water-stressed leaves of wild-type tomato (Lycopersicon esculentum Mill cv Ailsa Craig) and the wilty mutants sitiens, notabilis, and flacca were tested for their ability to metabolize xanthoxin to ABA. Extracts from wild type and notabilis converted xanthoxin at similar rates, while extracts from sitiens and flacca showed little or no activity. We also observed no activity when extracts of sitiens and flacca were mixed. Similar results were obtained when ABA aldehyde was used as a substrate, in that extracts from wild type and notabilis were equally active, but extracts from flacca and sitiens showed little activity. None of the tomato extracts showed significant activity with xanthoxin acid, xanthoxin alcohol, or ABA-1′,4-′Trans-diol as substrates. Extracts from bean leaves (Phaseolus vulgaris L. cv Blue Lake) were similar to the wild-type tomato extracts in their ability to convert the various substrates to ABA, although excised bean leaves did convert ABA-1′,4′-trans-diol and xanthoxin alcohol to ABA when these substances were taken up through the petiole. These results are consistent with a role for xanthoxin as a normal intermediate on the ABA biosynthetic pathway, and they suggest that ABA aldehyde is the final ABA precursor.  相似文献   

10.
ABA analog structure-function relationships were determined by testing an array of 19 different ABA analogs on 1-year-old clonal white spruce ( Picea glauca [Moench.] Voss) raised from somatic embryos. The contribution of specific structural features to analog activity was determined from the relative effect of aeroponically applied analog solutions (10−3 M ) on seedling gas exchange. Seedling transpiration rate (E) and carbon assimilation rate (A) were measured continuously during treatment by means of a whole plant cuvette system. The analogs were racemic about the C-1' chiral center and were derived from changes imposed on six regions of the ABA molecule. The activity of optically pure (+)-S-ABA and (−)-R-ABA were also determined. Analog activity was reduced by changing the oxidation level at C-1 from the carboxylic acid. The ring C-2', C-3' double bond was important but not essential to activity. The activity lost through changes in ring structure and C-1 oxidation level was, in many cases, almost fully restored by replacing the C-4, C-5 double bond with a triple bond. Therefore, analogs with a triple bond at C-4 were more active than their equivalents with a dienoic side chain. Fluorination of the C-7' methyl caused a relatively moderate reduction in analog activity. Truncation of C-1 and C-2 from the side chain reduced activity to near zero. The unnatural (−)-ABA enantiomer was inactive.  相似文献   

11.
Previous 18O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [18O]ABA with the label incorporated in the 1′-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1′-4′-trans-ABA-diol (ABA-trans-diol) from 18O-labeled apple fruit tissue and measured the extent and position of 18O incorporation by tandem mass spectrometry. 18O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18O in the carbonyl of ABA-aldehyde can be the cause of loss of 18O from the side chain of [18O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABA → ABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-d-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed.  相似文献   

12.
Previous studies have identified a conserved AG dinucleotide at the 3′ splice site (3′SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei α-tubulin 3′SS region is required to specify accurate 3′-end formation of the upstream β-tubulin gene and trans splicing of the downstream α-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3′SS identification. Our results indicate that a minimal α-tubulin 3′SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by the trans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the α-tubulin 3′SS is dependent upon the presence of exon sequences. Furthermore, β-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace α-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the α-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar to cis-splicing enhancers described in other systems.  相似文献   

13.
The cis-requirements for the first editing site in the atp9 mRNA from pea mitochondria were investigated in an in vitro RNA editing system. Template RNAs deleted 5′ of −20 are edited correctly, but with decreased efficiency. Deletions between −20 and the edited nucleotide abolish editing activity. Substitution of the sequences 3′ of the editing site has little effect, which suggests that the major determinants reside upstream. Stepwise mutated RNA sequences were used as templates or competitors that divide the cis-elements into several distinct regions. In the template RNAs, mutation of the sequence between −40 and −35 reduces the editing activity, while the region from −15 to −5 is essential for the editing reaction. In competition experiments the upstream region can be titrated, while the essential sequence near the editing site is largely resistant to excess competitor. This observation suggests that either one trans-factor attaches to these separate cis-regions with different affinities or two distinct trans-factors bind to these sequences, and one of which is present in limited amounts, wheras the other one is more abundant in the lysate.  相似文献   

14.
15.
16.
1. Diacetates of the four possible racemates of 4′,7-dimethoxyflavan-3,4-diol have been synthesized. 2. Comparison of their nuclear-magnetic-resonance spectra and the ionophoretic mobilities of the diols in borate buffer with those of the corresponding derivatives of guibourtacacidin shows that the natural 4′,7-dihydroxyflavan-3,4-diol has a 2,3-cis–3,4-trans configuration, but is accompanied by 2,3-trans–3,4-trans and 2,3-trans–3,4-cis isomers. These occur in the approximate proportions 5:1:1. 3. The occurrence of guibourtacacidins in Guibourtia coleosperma appears to be of taxonomic significance. Their association with a large excess of related tannins in the heartwood suggests that flavan-3,4-diols with these configurations are suitable precursors in tannin biosynthesis.  相似文献   

17.
Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3′ poly(A) tail, and showed the typical picornavirus genome organization; 5′untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3′UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5′UTR, a cis-replication element (CRE) in the 2C coding region and 3′UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3′UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV.  相似文献   

18.
We previously showed that sphingomyelin (SM) inhibits peroxidation of phosphatidylcholine (PC) and cholesterol. Since SM uniquely has a trans unsaturation in its sphingosine base, we investigated whether this feature is important for its antioxidant function. Substitution of the natural trans Δ4-double bond with a cis double bond (cis-SM), however, increased SM’s ability to inhibit Cu2+-mediated 16:0-18:2 PC oxidation by up to eightfold. Dihydro-SM, which lacks the double bond, was equally effective as trans-SM. In contrast to its effect in the sphingosine base, the presence of a cis double bond in the N-acyl group of trans-SM was not protective. cis-SM also inhibited the oxidation of cholesterol by FeSO4/ascorbate more efficiently than the trans isomer. The enhanced protective effect of cis-SM is selective for metal ion-promoted oxidation, and appears to arise from a decrease in the effective concentration of metal ions. These studies show that the trans double bond of SM is not essential for its antioxidant effects.  相似文献   

19.
The synthesis and bronchodilator activity in the guinea pig of several 15-deoxy-16-hydroxy-16-methylprostaglandin analogs is described. The E2 (VIa) and E1 (VIb) analogs are potent bronchodilators comparable in activity to the natural prostaglandins, but possessing a longer duration of effect. Replacement of the C13-C14 trans double bond by a cis double bond or an ethylene linkage causes a substantial diminishment of this activity.  相似文献   

20.
The oxidation of morphine by whole-cell suspensions and cell extracts of Cylindrocarpon didymum gave rise to the formation of 2,2′-bimorphine. The identity of 2,2′-bimorphine was confirmed by mass spectrometry and 1H nuclear magnetic resonance spectroscopy. C. didymum also displayed activity with the morphine analogs hydromorphone, 6-acetylmorphine, and dihydromorphine, but not codeine or diamorphine, suggesting that a phenolic group at C-3 is essential for activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号