首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

2.
Li B  Zhong L  Yang X  Andersson T  Huang M  Tang SJ 《PloS one》2011,6(8):e22920
Neurodegenration is a pathological hallmark of Alzheimer's disease (AD), but the underlying molecular mechanism remains elusive. Here, we present evidence that reveals a crucial role of Wnt5a signaling in this process. We showed that Wnt5a and its receptor Frizzled-5 (Fz5) were up-regulated in the AD mouse brain, and that beta-amyloid peptide (Aβ), a major constituent of amyloid plaques, stimulated Wnt5a and Fz5 expression in primary cortical cultures; these observations indicate that Wnt5a signaling could be aberrantly activated during AD pathogenesis. In support of such a possibility, we observed that inhibition of Wnt5a signaling attenuated while activation of Wnt5a signaling enhanced Aβ-evoked neurotoxicity, suggesting a role of Wnt5a signaling in AD-related neurodegeneration. Furthermore, we also demonstrated that Aβ-induced neurotoxicity depends on inflammatory processes, and that activation of Wnt5a signaling elicited the expression of proinflammatory cytokines IL-1β and TNF-α whereas inhibition of Wnt5a signaling attenuated the Aβ-induced expression of the cytokines in cortical cultures. Our findings collectively suggest that aberrantly up-regulated Wnt5a signaling is a crucial pathological step that contributes to AD-related neurodegeneration by regulating neuroinflammation.  相似文献   

3.
Allosteric interactions between residues that are spatially apart and well separated in sequence are important in the function of multimeric proteins as well as single-domain proteins. This observation suggests that, among the residues that are involved in long-range communications, mutation at one site should affect interactions at a distant site. By adopting a sequence-based approach, we present an automated approach that uses a generalization of the familiar sequence entropy in conjunction with a coupled two-way clustering algorithm, to predict the network of interactions that trigger allosteric interactions in proteins. We use the method to identify the subset of dynamically important residues in three families, namely, the small PDZ family, G protein-coupled receptors (GPCR), and the Lectins, which are cell-adhesion receptors that mediate the tethering and rolling of leukocytes on inflamed endothelium. For the PDZ and GPCR families, our procedure predicts, in agreement with previous studies, a network containing a small number of residues that are involved in their function. Application to the Lectin family reveals a network of residues interspersed throughout the C-terminal end of the structure that are responsible for binding to ligands. Based on our results and previous studies, we propose that functional robustness requires that only a small subset of distantly connected residues be involved in transmitting allosteric signals in proteins.  相似文献   

4.
5.
6.
LexA-independent expression of a mutant mucAB operon.   总被引:3,自引:2,他引:1       下载免费PDF全文
pKM101 is a naturally occurring plasmid that carries mucAB, an analog of the umuDC operon, the gene products of which are required for the SOS-dependent processing of damaged DNA necessary for most mutagenesis. Genetic studies have indicated that mucAB expression is controlled by the SOS regulatory circuit, with LexA acting as a direct repressor. pGW16 is a pKM101 derivative obtained by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis that was originally identified on the basis of its ability to cause a modest increase in spontaneous mutation rate. In this report, we show that pGW16 differs from pKM101 in being able to enhance methyl methanesulfonate mutagenesis and to confer substantial resistance to UV killing in a lexA3 host. The mutation carried by pGW16 is dominant and was localized to a 2.4-kb region of pGW16 that includes the mucAB coding region and approximately 0.6 kb of the 5'-flanking region. We determined the sequence of a 119-bp fragment containing the region upstream of mucAB and identified a single-base-pair change in that region, a G.C-to-A.T transition that alters a sequence homologous to known LexA-binding sites. DNA gel shift experiments indicate that LexA protein binds poorly to a 125-bp fragment containing this mutation, whereas a fragment containing the wild-type sequence is efficiently bound by LexA. This mutation also alters an overlapping sequence that is homologous to the -10 region of Escherichia coli promoters, moving it closer to the consensus sequence. The observation that the synthesis of pGW16-encoded mucAB proteins in maxicells is increased relative to that of pKM101-encoded mucAB proteins even in the absence of a lexA+ plasmid suggests that this mutation also increases the activity of the mucAB promoter.  相似文献   

7.
8.
HCMV UL76 is a member of a conserved Herpesviridae protein family (Herpes_UL24) that is involved in viral production, latency, and reactivation. UL76 presents as globular aggresomes in the nuclei of transiently transfected cells. Bioinformatic analyses predict that UL76 has a propensity for aggregation and targets cellular proteins implicated in protein folding and ubiquitin-proteasome systems (UPS). Furthermore, fluorescence recovery after photobleaching experiments suggests that UL76 reduces protein mobility in the aggresome, which indicates that UL76 elicits the aggregation of misfolded proteins. Moreover, in the absence of other viral proteins, UL76 interacts with S5a, which is a major receptor of polyubiquitinated proteins for UPS proteolysis via its conserved region and the von Willebrand factor type A (VWA) domain of S5a. We demonstrate that UL76 sequesters polyubiquitinated proteins and S5a to nuclear aggresomes in biological proximity. After knockdown of endogenous S5a by RNA interference techniques, the UL76 level was only minimally affected in transiently expressing cells. However, a significant reduction in the number of cells containing UL76 nuclear aggresomes was observed, which suggests that S5a may play a key role in aggresome formation. Moreover, we show that UL76 interacts with S5a in the late phase of viral infection and that knockdown of S5a hinders the development of both the replication compartment and the aggresome. In this study, we demonstrate that UL76 induces a novel nuclear aggresome, likely by subverting S5a of the UPS. Given that UL76 belongs to a conserved family, this underlying mechanism may be shared by all members of the Herpesviridae.  相似文献   

9.
Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements.  相似文献   

10.
11.
A revised version of an earlier phylogenetic model for the eukaryotes is presented. It is postulated that mitosis, phagotrophy, the mitochondrion, the flagellum, sexual reproduction, and the chloroplast are so complex that it is improbable that they evolved de novo more than once. It is assumed that their distribution among existing organisms is a reflection of their order of appearance in evolutionary history. Their distribution suggests that the nucleate organisms evolved through the sequence: amoeba, amoeboflagellate, sexual amoeboflagellate, and that the chloroplast first appeared in sexual flagellates. Sequence data indicate that the sexual amoeboflagellates gave rise to a line of holozoic protozoans that culminated in the metazoans. An amoeba-metazoan line can be envisaged as representing the mainstream of eukaryote evolution. Sequence data indicate that the sexual flagellates bearing mastigonemes, the eumycetes, and the metaphytes diverged from such a line, and in that order. Cytological and biochemical data strongly suggest that the rhodophytes and metaphytes derive from a common algal ancestor, that this ancestor would have arisen from a sexual, biflagellate, holozoic protozoan lacking mastigonemes, and that it would have been closely related to the most recent monocellular ancestor of the metazoans. Sequence data indicate that the chloroplast derives from an ancestral blue-green bacterium that was originally an endosymbiont within a phagotrophic protozoan. Thus the metaphytes may be secondary in a series of organisms able to produce chlorophyll a. There is evidence that subsequently a fully developed chloroplast able to produce chlorophylls a and b was transferred by a further symbiosis to a holozoic euglenoid protozoan; the chloroplast of the euglenophytes is so similar to that of the chlorophytes, but the morphologies of these algae are so different, it was postulated that euglenophytes arose through symbiosis between a euglenid and a chlorophyte. It is proposed here that the distribution of phylogenetic features among organisms bearing mastigonemes indicates that the euglenophytes gave rise to dinophytes, cryptophytes, and all other organisms bearing mastigonemes. Thus the algae bearing mastigonemes may be tertiary in a series of organisms able to produce chlorophyll a. It is postulated that the production of chlorophyll b in algae, and the stacking of thylakoids first appeared in a line from rhodophytes to chlorophytes, and that replacement of chlorophyll b by chlorophyll c2 occurred in a line from euglenophytes to dinophytes. To account for the presence of biliproteins in rhodophytes and cryptophytes, it is proposed that the putative transfer of the chloroplast from chlorophytes to euglenophytes occurred before a loss of biliproteins in the metaphyte line, and that the primordial euglenophytes, dinophytes, and cryptophytes were able to produce biliproteins; subsequently, biliprotein production was abandoned in all algae except rhodophytes and cryptophytes. The interrelationships of the chytrids, eumycetes, and oomycetes remain obscure. However, the model is consistent with the hypothesis that the chytrids represent ancestors to the eumycetes, and that the eumycete line and the oomycete-hyphochytrid group of fungi arose independently. The distribution of phagotrophy, biflagellate form, and sexuality suggests that the paired form of flagella first appeared in asexual amoeboflagellates, and became stabilised in sexual amoeboflagellates. The overall model is in accord with sequence evidence that the genomes of the nucleus, mitochondrion, and chloroplast derive from different genetic sources in ancestral prokaryotes, and is consistent with the hypothesis that the mitochondrion and chloroplast were acquired through endosymbioses initiated by phagotrophic inclusion of an aerobic bacterium, and a blue-green bacterium, respectively. Avenues for phylogenetic and sequence investigation for testing the model are suggested.  相似文献   

12.
The possibility that thermal cues play a part in the teat-seeking behaviour of newly-born lambs was investigated. Measurements show that the external surfaces of a lactating ewe vary in temperature, highest readings being obtained from the inguinal cavity at the base of the udder. Experiments show that, before sucking, lambs stay longer in a warm compartment than in a cool one, also that they become more active when their muzzles are placed in contact with a warm smooth surface than they do when placed in contact with a cool smooth surface. The activity evoked resembles that of newlyborn lambs searching for the teat.  相似文献   

13.
This paper describes a number of computer vision systems that we have constructed, and which are firmly based on knowledge of diverse sorts. However, that knowledge is often represented in a way that is only accessible to a limited set of processes, that make limited use of it, and though the knowledge is amenable to change, in practice it can only be changed in rather simple ways. The rest of the paper addresses the questions: (i) what knowledge is mobilized in the furtherance of a perceptual task?; (ii) how is that knowledge represented?; and (iii) how is that knowledge mobilized? First we review some cases of early visual processing where the mobilization of knowledge seems to be a key contributor to success yet where the knowledge is deliberately represented in a quite inflexible way. After considering the knowledge that is involved in overcoming the projective nature of images, we move the discussion to the knowledge that was required in programs to match, register, and recognize shapes in a range of applications. Finally, we discuss the current state of process architectures for knowledge mobilization.  相似文献   

14.
psr has been reported by M. Ligozzi, F. Pittaluga, and R. Fontana, (J. Bacteriol. 175:2046-2051, 1993) to be a genetic element located just upstream of the structural gene for the low-affinity penicillin-binding protein 5 (PBP 5) in the chromosome of Enterococcus hirae ATCC 9790 and to be involved in the repression of PBP 5 synthesis. By comparing properties of strains of E. hirae that contain a full-length, functional psr with those of strains that possess a truncated form of the gene, we have obtained data that indicate that psr is involved in the regulation of several additional surface-related properties. We observed that cells of strains that possessed a truncated psr were more sensitive to lysozyme-catalyzed protoplast formation, autolyzed more rapidly in 10 mM sodium phosphate (pH 6.8), and, in contrast to strains that possess a functional psr, retained these characteristics after the cultures entered the stationary growth phase. Cellular lytic properties did not correlate with differences in the cellular contents of muramidase-1 or muramidase-2, with the levels of PBP 5 produced, or with the penicillin susceptibilities of the strains. However, a strong correlation was observed with the amounts of rhamnose present in the cell walls of the various strains. All of the strains examined that possessed a truncated form of psr also possessed approximately one-half of the rhamnose content present in the walls of strains that possessed a functional psr. These data suggest that psr is also involved in the regulation of the synthesis of, or covalent linkage to the cell wall peptidoglycan of, a rhamnose-rich polysaccharide. These differences in cell wall composition could be responsible for the observed phenotypic differences. However, the multiple effects of psr suggest that it is part of a global regulatory system that, perhaps independently, affects several cell surface-related properties.  相似文献   

15.
We have constructed a model structure that we believe represents the strongest possible physically and chemically reasonable representation of a hypothesized catalytically active hammerhead ribozyme structure in which a single divalent metal ion bridges the A9 and scissile phosphate groups. It has been proposed that such a structure arises from a conformational change in which the so-called ground-state structure (as observed by X-ray crystallography) rearranges in such a way that the pro-R oxygen atoms of both the A9 and scissile phosphate groups are directly coordinated by a single divalent metal ion in the transition-state of the hammerhead ribozyme cleavage reaction. We show that even the small subset of possible model structures that are consistent with these requirements, and that are stereochemically and sterically reasonable, are contradicted by experimental evidence. We also demonstrate that even a minimal subset of assumptions, i.e. that stems I and II are helical and that the two phosphate groups are coordinated by a divalent metal ion in the standard octahedral geometry, are sufficient to lead to this contradiction. We therefore conclude that such a mechanism of hammerhead ribozyme catalysis is untenable, at least in its present formulation.  相似文献   

16.
Higher plants use multiple perceptive measures to coordinate flowering time with environmental and endogenous cues. Physiological studies show that florigen is a mobile factor that transmits floral inductive signals from the leaf to the shoot apex. Arabidopsis FT protein is widely regarded as the archetype florigen found in diverse plant species, particularly in plants that use inductive photoperiods to flower. Recently, a large family of FT homologues in maize, the Zea CENTRORADIALIS (ZCN) genes, was described, suggesting that maize also contains FT-related proteins that act as a florigen. The product of one member of this large family, ZCN8, has several attributes that make it a good candidate as a maize florigen. Mechanisms underlying the floral transition in maize are less well understood than those of other species, partly because flowering in temperate maize is dependent largely on endogenous signals. The maize indeterminate1 (id1) gene is an important regulator of maize autonomous flowering that acts in leaves to mediate the transmission or production of florigenic signals. This study finds that id1 acts upstream of ZCN8 to control its expression, suggesting a possible new link to flowering in day-neutral maize. Moreover, in teosinte, a tropical progenitor of maize that requires short-day photoperiods to induce flowering, ZCN8 is highly up-regulated in leaves under inductive photoperiods. Finally, vascular-specific expression of ZCN8 in Arabidopsis complements the ft-1 mutation, demonstrating that leaf-specific expression of ZCN8 can induce flowering. These results suggest that ZCN8 may encode a florigen that integrates both endogenous and environmental signals in maize.  相似文献   

17.
Volvox carteri, a green alga in the order Volvocales, contains two completely differentiated cell types, small motile somatic cells and large reproductive cells called gonidia, that are set apart from each other during embryogenesis by a series of visibly asymmetric cell divisions. Mutational analysis has revealed a class of genes (gonidialess, gls) that are required specifically for asymmetric divisions in V. carteri, but that are dispensable for symmetric divisions. Previously we cloned one of these genes, glsA, and showed that it encodes a chaperone-like protein (GlsA) that has close orthologs in a diverse set of eukaryotes, ranging from fungi to vertebrates and higher plants. In the present study we set out to explore the role of glsA in the evolution of asymmetric division in the volvocine algae by cloning and characterizing a glsA ortholog from one of the simplest members of the group, Chlamydomonas reinhardtii, which does not undergo asymmetric divisions. This ortholog (which we have named gar1, for glsA related) is predicted to encode a protein that is 70% identical to GlsA overall, and that is most closely related to GlsA in the same domains that are most highly conserved between GlsA and its other known orthologs. We report that a gar1 transgene fully complements the glsA mutation in V. carteri, a result that suggests that asymmetric division probably arose through the modification of a gene whose product interacts with GlsA, but not through a modification of glsA itself.  相似文献   

18.
19.
Eight neurodegenerative diseases have been shown to be caused by the expansion of a polyglutamine stretch in specific target proteins that lead to a gain in toxic property. Most of these diseases have some features in common. A pathological threshold of 35-40 glutamine residues is observed in five of the diseases. The mutated proteins (or a polyglutamine-containing subfragment) form ubiquitinated aggregates in neurons of patients or mouse models, in most cases within the nucleus. We summarize the properties of a monoclonal antibody that recognizes specifically, in a Western blot, polyglutamine stretches longer than 35 glutamine residues with an affinity that increases with polyglutamine length. This indicates that the pathological threshold observed in five diseases corresponds to a conformational change creating a pathological epitope, most probably involved in the aggregation property of the carrier protein. We also show that a fragment of a normal protein carrying 38 glutamine residues is able to aggregate into regular fibrils in vitro. Finally, we present a cellular model in which the induced expression of a mutated full-length huntingtin protein leads to the formation of nuclear inclusions that share many characteristics with those observed in patients: those inclusions are ubiquitinated and contain only an N-terminal fragment of huntingtin. This model should thus be useful in studying a processing step that is likely to be important in the pathogenicity of mutated huntingtin.  相似文献   

20.
Reticulon 4a (Rtn4a) is a membrane protein that shapes tubules of the endoplasmic reticulum (ER). The ER is attached to the nuclear envelope (NE) during interphase and has a role in post mitotic/meiotic NE reassembly. We speculated that Rtn4a has a role in NE dynamics. Using immuno-electron microscopy we found that Rtn4a is located at junctions between membranes in the cytoplasm, and between cytoplasmic membranes and the outer nuclear membrane in growing Xenopus oocyte nuclei. We found that during NE assembly in Xenopus egg extracts, Rtn4a localises to the edges of membranes that are flattening onto the chromatin. These results demonstrate that Rtn4a locates to regions of high membrane curvature in the ER and the assembling NE. Previously it was shown that incubation of egg extracts with antibodies against Rtn4a caused ER to form into large vesicles instead of tubules. To test whether Rtn4a contributes to NE assembly, we added the same Rtn4a antibody to nuclear assembly reactions. Chromatin was enclosed by membranes containing nuclear pore complexes, but nuclei did not grow. Instead large sacs of ER membranes attached to, but did not integrate into the NE. It is possible therefore that Rtn4a may have a role in NE assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号