首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous report we demonstrated the presence of a factor binding deoxyribonucleic acid (DNA) in vitro (BF) in cell leakage fluids from transformable Streptococcus sanguis strains Wicky, Challis, and Blackburn. BF originating from strain Wicky was purified to homogeneity, and its properties are described. In this work, it was found that BF occurs at the surface of Wicky cells in two forms, loosely bound (LB-BF) and strongly bound to the cell envelope. It was demonstrated that LB-BF formed fast-sedimenting complexes with exogenous DNA at the surface of Wicky cells. About 10-fold-more DNA became associated as a fast-sedimenting complex in competent than in incompetent cells. Thus, LB-BF is a cell receptor for exogenous DNA. However, the comparison of the effects of some agents on the transformation yield and the formation of LB-BF-DNA complexes, showed that the influence of these agents on both observed phenomena is not parallel and may be even opposite. These results are interpreted to mean that the LB-BF-DNA complexes do not take part in transformation. The problem of participation of BF strongly bound with the cell membrane fraction remains to be elucidated.  相似文献   

2.
Competent cell-deoxyribonucleic acid (DNA) interactions were examined using tritium-labeled homologous or heterologous native or denatured DNAs and competent Streptococcus sanguis Wicky cells (strain WE4). The DNAs used were extracted from WE4 cells, Escherichia coli B cells, and E. coli bacteriophages T2, T4, T6, and T7. The reactions examined were: (i) total DNA binding, (ii) deoxyribonuclease-resistant DNA binding, and (iii) the production of acid-soluble products from the DNA. Optimal temperatures for the reactions were as follows: reaction (i), between 30 and 40 degrees C; reaction (ii), 30 degrees C; and reaction (iii), greater than 40 degrees C. The rates for the reactions (expressed as molecules of DNA that reacted per minute per colony-forming unit) did not vary greatly from one DNA source to another. With a constant competent cell concentration and differing DNA concentrations below a saturation level (from a given source), a different but constant fraction of the added DNA was cell bound, deoxyribonuclease resistant, and degraded to acid-soluble products. In experiments where the number of competent cells was varied and the DNA concentration was held constant, again essentially the same result was obtained. The extent of reactions (i), (ii), and (iii) depended upon the numbers as well as the source of DNA molecules applied to competent cells. Calcium ion essential for native DNA-cell reactions was also found essential for denatured DNA-cell reactions. Data obtained from competition experiments lead to the conclusion that competent WE4 cells contain specific sites for native as well as denatured DNAs.  相似文献   

3.
The ablity of competent and noncompetent Streptococcus sanguis (strain Wicky) cells to release enzymes to the environment was studied. Both competent and noncompetent cells leaked the enzymes tested (aldolase, phosphatase and deoxyribonuclease), but the activities liberated from the competent cells were always roughly 2-fold higher than those released from noncompetent cells. This increased enzyme leakage from competent cells occured in all kinds of media and procedures employed. The leakage of enzymes followed a time-dependent kinetics (different for aldolase and phosphatase), was temperature sensitive and had a pH optimum. The increased enzyme release was most likely not due to cell disruption, but seemed to be rather a consequence of alteration in cell barrier permeability. These results strongly support the "unmasking" model proposed for explanation of competence development in bacteria.  相似文献   

4.
Plasmid deoxyribonucleic acid (DNA) from Streptococcus faecalis, strain DS5, was transferred to the Challis strain of Streptococcus sanguis by transformation. Two antibiotic resistance markers carried by the beta plasmid from strain DS5, erythromycin and lincomycin, were transferred to S. sanguis at a maximum frequency of 1.8 x 10-5/colony-forming unit. Approximately 70% of the covalently closed circular DNA isolated from transformant cultures by dye buoyant density gradients was shown to be hybridizable to beta plasmid DNA. Two major differences were observed between the beta plasmid from S. faecalis and the plasmid isolated from transformed S. sanguis: (i) the beta plasmid from strain DS5 sedimented in velocity gradients at 43S, whereas the covalently closed circular DNA from transformed Challis sedimented at 41S, suggesting a 1.5-Mdal deletion from the beta plasmid occurred; (ii) although the 43S beta plasmid remained in the supercoiled configuration for several weeks after isolation, the 41S plasmid was rapidly converted to a linear double-stranded molecule. Attempts to transform S. sanguis with the alpha plasmid from S. faecalis, strain DS5, were unsuccessful.  相似文献   

5.
Monomeric and oligomeric forms of a 5.0 x 10(6)-dalton plasmid (conferring erythromycin resistance) were able to genetically transform naturally competent Streptococcus sanguis. Transformation with electrophoretically purified monomer was a second-order process, whereas transformation with a dye-buoyant density gradient-purified plasmid preparation followed one-hit kinetics.  相似文献   

6.
We have induced with nitrosoguanidine in Streptococcus sanguis a mutation conferring inability to grow and synthesize ribonucleic acid (RNA) at 42 C, the optimal temperature for growth and RNA synthesis in the parental strain. The mutation (ts) is transferable via transforming deoxyribonucleic acid (DNA) and is replaceable by its wild-type allele with fairly high efficiency in transformation reactions. The ts mutation is unlinked to the sites of mutation conferring resistance of rifampin (rifr) and streptolydigin (stgr), known to affect the beta subunit of DNA-dependent RNA polymerase. Extracts from strains carrying the ts mutation are more sensitive to elevated temperatures than are parental extracts when assayed for DNA-dependent RNA polymerase. The conclusion that the mutation causes a temperature-sensitive defect in some component of this enzyme (other than beta) is supported by the finding that the polymerase activity of a heat-inactivated ts stgr extract cannot be increased by addition of an unheated ts stgs extract, which is itself inactivated by streptolydigin. S. sanguis recipients carrying the ts mutation are highly transformable with heterospecific DNA, especially at the restrictive temperature.  相似文献   

7.
Maximal beta-galactosidase activity in Streptococcus lactis was obtained at pH 7, but the maximal rate of thiomethyl-beta-d-galactoside uptake was observed at pH 3.6 to 4. It is concluded that the decrease in beta-galactosidase activity in intact cells at lowered pH is not due to diminished transport of beta-galactoside.  相似文献   

8.
Addition of sodium metaperiodate to competent Streptococcus sanguis (Wicky) cells at 0 or 37 C revealed that the deoxyribonucleic acid binding sites consist of amino acids.  相似文献   

9.
10.
This report describes the determination of the complete primary structure of the adhesin receptor polysaccharide of Streptococcus oralis ATCC 55229 (previously characterized as Streptococcus sanguis H1), a Gram-positive bacteria implicated in dental plaque formation. The polysaccharide was isolated from S. oralis ATCC 55229 cells after deproteination, enzymatic hydrolysis, and ion exchange chromatography. It was shown to consist of rhamnose, galactose, glucose, glycerol, and phosphate, in molar ratios of 2:3:1:1:1. Sequence and linkage assignments of the glycosyl residues were obtained by methylation analysis followed by gas-liquid chromatography and electron-impact mass spectrometry. 31P NMR spectroscopy revealed that phosphate was present in a diester, connecting glycerol to one of the galactosyl residues. High-performance liquid chromatography of a partial acid hydrolysate of the polysaccharide confirmed this finding by showing galactose 6-phosphate and glycerol 1-phosphate. The structural determination was completed by the combination of two-dimensional homonuclear Hartmann-Hahn and NOE experiments and heteronuclear [1H,13C] and [1H,31P] multiple-quantum coherence experiments. Thus, the adhesin receptor polysaccharide of S. oralis ATCC 55229 was found to be a polymer composed of hexasaccharide repeating units that contain glycerol linked through a phosphodiester to C6 of the alpha-galactopyranosyl residue and are joined end-to-end through galactofuranosyl-beta(1-->3)-rhamnopyranosyl linkages: [formula: see text] This structure is novel among bacterial cell surface polysaccharides in general and specifically among those implicated in dental plaque formation.  相似文献   

11.
Abstract Pure cultures of Streptococcus mutans NCTC 10499 and Streptococcus sanguis ATCC10556 were grown in a glucose-limited chemostat under varying concentrations of oxygen in the gas phase. Both streptococci consumed large amounts of oxygen by the partial oxidation of sugars, thus maintaining an anaerobic environment. With increasing oxygen concentrations the degradation products from glucose become more oxidized. Ethanol gradually disappeared from the culture fluid while the acetate concentration increased. In the case of S. sanguis , the products became even more oxidized at higher oxygen concentrations, and carbon dioxide was formed instead of formate. Sudden increase in the oxygen concentration in the gas phase caused elevated oxygen tensions in the cultures, which led to a decrease in the growth rate of the streptococci.  相似文献   

12.
Chimeric plasmids, which were useful as cloning vehicles in a Streptococcus sanguis (Challis) host vector system, have been constructed. By using three different strategies of restriction endonuclease digestion and ligation, a deoxyribonucleic acid (DNA) fragment bearing an erythromycin resistance determinant was ligated in vitro to a phenotypially cryptic plasmid from Streptococcus ferus. Recombinant plasmids could be recovered after transformation of S. sanguis (Challis) with these preparations. Three useful chimeras were constructed. pVA680, 5.5 megadaltons in size, contained a single KpnI site into which passenger DNA may be spliced. pVA736, 5.0 megadaltons in size, contained single EcoRI, HindIII, and KpnI sites into which passenger DNA may be spliced. The EcoRI and KpnI sites of pVA736 may be used in combination with one another when ligating DNA into this plasmid. pVA738, 3.7 megadaltons in size, contained single HindIII and AvaI sites into which passenger DNA may be spliced. pVA680, pVA736, and pVA738 were stably maintained as multicopy plasmids in S. sanguis (Challis). None of them continued to replicate (amplify) in chloramphenicol-treated cells. By using pVA736 as a vector, we have cloned a chloramphenicol resistance determinant obtained from a large, conjugative streptococcal R plasmid. In addition, chromosomal DNA sequences from Streptococcus mutans have been inserted into pVA736 by using the KpnI-EcoRI site combination.  相似文献   

13.
Reagents that interact with sulfhydryl groups are shown to inhibit competence factor (CF)-induced competence development in Streptococcus sanguis (Wicky) strain WE4 (Wicky 4 Ery(R)). Inhibition is correlated with specific inhibition of either the function or biosynthesis of three competent cell-related proteins and is reversed by either 2-mercaptoethanol or dithiothreitol. Mercuric chloride (5 muM) or N-ethylmaleimide (NEM; 50 muM) inhibited (i) the function but not the biosynthesis or activation of the competent cell-associated autolysin; (ii) the biosynthesis of a competent cell-associated protein of unknown function, demonstrated by polyacrylamide gel electrophoresis of acidified phenol extracts; and (iii) the biosynthesis or activation of distinct deoxyribonucleic acid (DNA)-binding sites. Neither reagent at the indicated concentration interfered with the uptake of CF by cells or with the uptake and expression of DNA by competent cells. Neither reagent inactivated CF or genetic markers coded by the transforming DNA, nor did they inhibit cell growth or viability appreciably. The data reveal that either mercuric chloride or NEM can differentially inhibit induced protein synthesis and, in addition, conclusively show that some autolytic activity is essential for the onset of the competent state.  相似文献   

14.
血链球菌是早期定植在口腔内的细菌之一,也是口腔内的常驻菌.血链球菌作为牙周有益菌对大多数牙周可疑致病菌具有拮抗作用.其主要机制为产生过氧化氢和血链素.由于各种原因进入血液循环后可引起感染性心内膜炎,主要机制为血链球菌的表面抗原使血小板产生黏附、聚集,其在血小板表面的结合位点在血小板膜糖蛋白Ib附近.单核细胞在血链球菌的刺激下表达大量的组织因子,激活外源性凝血途径形成血栓.  相似文献   

15.
Deoxyribonucleic acid (DNA) from the covalently closed circular DNA molecules of Pseudomonas phage PM2 was found to enter normally transformable cells of Streptococcus pneumoniae as readily as linear bacterial DNA. In a mutant of S. pneumoniae that lacks a membrane nuclease and is defective in DNA entry, as many molecules of PM2 DNA as of linear DNA were bound on the outside of cells at equivalent DNA concentrations. Bound DNA suffered single-strand breaks, but circular DNA with preexisting breaks was bound no better than closed circles. In the presence of divalent cations, DNA bound to cells of a leaky nuclease mutant showed double-strand breaks. At least the majority of PM2 DNA that entered normal cells was single stranded. These results are consistent with a mechanism for DNA entry in which DNA is first nicked on binding, then a double-strand break is formed by cleavage of the complementary strand, and continued processive action of the membrane nuclease facilitates entry of the originally nicked strand. Although the bulk of circular donor DNA appeared to enter in this way, the results do not exclude entry of a small amount of donor DNA in an intact form.  相似文献   

16.
17.
18.
19.
Biosynthesis of oligosaccharide-lipid in Streptococcus sanguis   总被引:1,自引:2,他引:1       下载免费PDF全文
An oligosaccharide-lipid containing N-acetyl d-glucosamine (GlcNAc), l-rhamnose, and d-glucose was synthesized when the particulate enzyme from Streptococcus sanguis was incubated with UDP-GlcNAc, TDP-rhamnose, and UDP-glucose. The incorporation of d-glucose into the lipid was dependent on the preincorporation of l-rhamnose, which in turn was dependent on that of GlcNAc. This indicates that the order of sugar incorporation is GlcNAc, l-rhamnose, and d-glucose. The synthesis of GlcNAc-lipid was stimulated twofold by ATP and was inhibited strongly by UDP and slightly by UMP, CDP, and TDP, but not by all other nucleoside diphosphates and nucleoside monophosphates tested. A [gamma-(32)P]ATP labeling experiment indicated that some acceptor lipid was present in nonphosphorylated form. The acid and alkaline stabilities of the GlcNAc-lipid were similar to those of glycosyl undecaprenylphosphate, and the thin-layer chromatographic mobility of the lipid was slightly faster than that of the mannosylphosphorylundecaprenol. The molar ratio of phosphate to GlcNAc in purified GlcNAc-lipid was found to be 0.96:1. These results suggested that the GlcNAc was attached to the lipid moiety, presumably undecaprenol, by phosphodiester bonds. The incorporation of l-rhamnose into the lipid was inhibited by UDP and UMP, respectively, in a manner similar to the incorporation of GlcNAc. This suggested that the oligosaccharide was also linked to the lipid moiety by phosphodiester bonds.  相似文献   

20.
Nine strains of cariogenic Streptococcus mutans and two strains of Streptococcus sanguis were tested for their ability to form hydroxyapatite. The cells were examined by X-ray diffraction and electron microscopy for apatite crystals after growth in a synthetic calcification medium. Each of the test isolates, except for one strain of S. sanguis, produced intracellular mineral. Two strains of S. mutans formed both intra- and extracellular crystals. There was no apparent relationship between calcifiability and serotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号