首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The effect of the Na+-channel blocker, amiloride, on the short-circuit current carried by Na+ was studied with fluctuation analysis, in rabbit descending colon epithelium. (2) In the presence of mucosal amiloride, the power spectrum of the Na+-current noise showed a Lorentzian component. When the Na+ current was reduced by increasing the blocker concentrations, the Lorentzian plateau decreased and corner frequency increased. Microscopic short-circuit current and current-noise data are evidence for a two-state mechanism of the blocker interaction with the Na+ channel. (3) On- and off-rate constants for the blocker-receptor reaction, single-channel currents and Na+-channel density were calculated at room temperature and at 37°C. Also, the activation energy for the amiloride-receptor reaction was estimated. The microscopic parameters obtained for the Na+ channel in the colon were similar to those found for Na+ channels in other tight epithelia.  相似文献   

2.
In the presence of the Na+ -channel blocker amiloride, the short-circuit current across the skins of bullfrog tadpoles in metamorphic stages XIX-XXIV was subjected to fluctuation analysis. The resulting power spectra contained a Lorentzian component of which the plateau value (S0) decreased while the corner frequency (fc) increased as the mucosal amiloride concentration was increased from 0.5 to 24 microM. From the linear relationship between the fc values and the amiloride concentrations it was possible to determine the binding (k'01) and unbinding (k10) constants for amiloride to its receptor on the Na+ channel. With these parameters as well as short-circuit current and S0 values, the current through the individual Na+ channels (i) was calculated (average 0.58 pA). It did not increase significantly during late metamorphosis. The density of Na+ channels (M) in the apical membrane, on the other hand, increased significantly. It would appear that the increase in short-circuit current which occurs at this time is due primarily to an increase in amiloride-blockable Na+ channels. Unexpectedly, a Lorentzian component could be fitted to power spectra in amiloride-treated skins (stages XIX-XXI) which showed no amiloride-sensitive short-circuit current. Moreover, the typical increase in fc with the amiloride concentration did not occur in these animals.  相似文献   

3.
Epithelial sheets (including cuticle) from posterior gills of the freshwater-adapted euryhaline crab Eriocheir sinensis were obtained according to the method of Schwarz and Graszynski ((1989) Comp. Biochem. Physiol. 92A, 601-604; (1989) Verh. Dtsch. Zool. Ges. 82, 211 and (1989) Arch. Int. Physiol. Biochim. 97, C45). With external NaCl-saline, the outward-directed short-circuit current (Isc) could hardly be influenced by external amiloride up to 100 mumol/l but was, on the contrary, strictly dependent on apical Cl- (Onken, Graszynski and Zeiske (1991) J. Comp. Physiol. B 161, 293-301). In absence of external chloride an inward-directed, amiloride-inhibitable Isc was observed which depended on external Na+ (thus, Isc approximately INa) in a two-step, saturating mode. The Isc-block by amiloride obeyed saturation kinetics (half-maximal at less than or equal to 1 mumol/l, suggesting apical Na(+)-channels). Only for Na+ concentrations below 100 mmol/l we found an indication for a competitive interaction between Na+ and amiloride at the channel. Current fluctuation analysis revealed the presence of an amiloride-induced relaxation (Lorentzian) component in the Isc-noise (so-called 'blocker-noise'). The Lorentzian parameter-shifts with increasing amiloride concentration indicate first-order kinetics of the blocker with its apical receptor. Using a 'two-state' blocking model we calculated, for amiloride concentrations between 2 and 5 mumol/l, a mean single-channel current of 0.46 pA and a mean channel density of 250.10(6) cm-2.  相似文献   

4.
5.
Adult amphibian skin actively transports Na+ from its apical to basolateral side while in turn, K+ is recycled through Na+, K+-ATPase and K+ channels located in the basolateral membrane. We previously found that PRL stimulates Na+ transport in the skin of the adult tree frog (Hyla arborea japonica) via an increase in the open-channel density of the epithelial Na+ channel (ENaC). If PRL also activates basolateral K+ channels, this activation would help to stimulate Na+ transport, too. Whether PRL does indeed stimulate basolateral K+ channels in the adult tree frog was examined by measuring the short-circuit current across nystatin-treated skin. Both tolbutamide, a K(ATP) channel blocker, and tetrapentylammonium (TPA), a KCa channel blocker, blocked the current, the effect of TPA being more powerful than that of tolbutamide. Contrary to expectation, PRL inhibited the basolateral K+ channels in this skin. In the presence of basolateral amiloride, PRL still inhibited the basolateral K+ current, suggesting that the (Na+)-H+ exchanger located in the basolateral membrane does not mediate the inhibitory effect of PRL on the basolateral K+ channels in Hyla.  相似文献   

6.
川芎嗪增加大鼠远端结肠阴离子分泌的基侧膜机制   总被引:3,自引:1,他引:2  
Xing Y  He Q  Zhu JX  Chan HC 《生理学报》2003,55(6):653-657
本研究用短路电流技术来观察在川芎嗪作用下,电解质在大鼠远端结肠上皮细胞的转运及其细胞机制。在新鲜分离的结肠上皮的基侧膜加入川芎嗪,能产生较大的短路电流。用粘膜下神经元阻断剂——河豚毒素预作用于结肠上皮,不影响随后的川芎嗪所产生的短路电流,前列腺素合成抑制剂indomethacin预作用可使随后的川芎嗪产生的短路电流减少55.2%。在结肠上皮的顶膜加入Cl^-通道阻断剂DPC和glibenclamide,能完全阻断川芎嗪产生的短路电流。Bumetanide,基侧膜钠、钾、氯共转运体阻断剂能抑制川芎嗪引起的短路电流的85.2%,而结肠上皮细胞基侧膜的非选择性钾通道阻断剂Ba^2 能阻断90%以上的短路电流,说明基侧膜的钠、钾、氯共转运体和钾通道在川芎嗪引起的短路电流中起着重要的作用。上述结果表明,川芎嗪刺激大鼠远端结肠上皮细胞分泌Cl^-是通过上皮细胞顶膜Cl^-通道和基侧膜的钠、钾、氯共转体和K^ 通道介导的。  相似文献   

7.
The effect of prolactin (PRL) on ion transport across the rat colon epithelium was investigated using Ussing chamber technique. PRL (1 μg/ml) induced a sustained decrease in short-circuit current (I(sc)) in the distal colon with an EC(50) value of 100 ng/ml and increased I(sc) in the proximal colon with an EC(50) value of 49 ng/ml. In the distal colon, the PRL-induced decrease in I(sc) was not affected by Na(+) channel blocker amiloride or Cl(-) channel blockers, NPPB, DPC, or DIDS, added mucosally. However, the response was inhibited by mucosal application of K(+) channel blockers glibenclamide, quinidine, and chromanol 293B, whereas other K(+) channel blockers, Ba(2+), tetraethylammonium, clotrimazole, and apamin, failed to have effects. The PRL-induced decrease in I(sc) was also inhibited by Na(+)-K(+)-2Cl(-) transporter inhibitor bumetanide, Ba(2+), and chromanol 293B applied serosally. In the transverse and proximal colon, the PRL-induced increase in I(sc) was suppressed by DPC, glibenclamide, and bumetanide, but not by NPPB, DIDS, or amiloride. The PRL-induced changes in I(sc) in both distal and proximal colon were abolished by JAK2 inhibitor AG490, but not BAPTA-AM, the Ca(2+) chelating agent, or phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest a segment-specific effect of PRL in rat colon, by activation of K(+) secretion in the distal colon and activation of Cl(-) secretion in the transverse and proximal colon. Both PRL actions are mediated by JAK-STAT-dependent pathway, but not phosphatidylinositol 3-kinase pathway or Ca(2+) mobilization. These findings suggest a role of PRL in the regulation of electrolyte transport in mammalian colon.  相似文献   

8.
Noise analysis of the Na+ channels of the apical membranes of frog skin bathed symmetrically in a Cl-HCO3 Ringer solution was done with amiloride and CGS 4270. Tissues were studied in their control states and after inhibition of transepithelial Na+ transport (Isc) by addition of quinine or quinidine to the apical solution. A critical examination of the amiloride-induced noise indicated that the single channel Na+ currents (iNa) were decreased by quinine and quinidine, probably because of depolarization of apical membrane voltage. Despite considerable statistical uncertainty in the methods of estimation of the Na+ channel density with amiloride-induced noise (NA, see text), the striking observation was a large increase of NA with amiloride inhibition of the rate of Na+ entry into the cells. NA was increased to 406% of control, whereas Isc was inhibited to 8.6% of control by 6 microM amiloride. Studies were done also with the Na+ channel blocker CGS 4270. Noise analysis with this compound was advantageous, permitting iCGSNa and NCGS to be measured in individual tissues with a relatively small inhibition of Isc. As with amiloride, inhibition of Isc with CGS 4270 caused large increases of the Na+ channel density (approximately 200% at approximately 35% inhibition of the Isc). Quinine and quinidine caused an approximately 50% increase of Na+ channel density while inhibiting iNa by approximately 60-70%. As inhibition of Na+ entry leads to an increase of Na+ channel density, a mechanism of autoregulation appears to be a major factor in adjusting the apical membrane Na+ permeability of the cells.  相似文献   

9.
The antifibrillatory drug bretylium and the antiepileptic drug diphenylhydantoin cause an increase in the potential different and in the short-circuit current (SCC) across frog skin when added to the outer surface. The effect of both drugs depends upon the presence of sodium ions in the outer medium and is blocked by the specific sodium channel blocker, amiloride. Quantitative analysis shows that amiloride binds to open as well as closed mucosal sodium channel with the same affinity. The effects of diphenylhydantoin and bretylium differ with respect to their dependence on external pH. The diphenylhydantoin or the bretylium stimulatory effects are additive to the effects of oxytocin. In most cases the diphenylhydantoin and bretylium effects are also additive. It is concluded that the external side of the mucosal Na+ channels contains sites which interact specifically with either bretylium or diphenylhydantoin and thus remove the sodium induced closure of the channels.  相似文献   

10.
Most of the electrical potential-driven 22Na+ uptake in toad bladder membrane vesicles can be blocked by the diuretic amiloride. Analysis of the amiloride inhibition curve indicates the presence of two pathways with low and high affinities to the diuretic (Garty, H. (1984) J. Membr. Biol. 82, 269-279). The selectivity of these pathways to amiloride was explored by comparing the inhibition curve of this diuretic with those of 10 of its structural analogues. The relative potencies of various amiloride-like compounds as blockers of the flux component with high affinity to amiloride were in good agreement with the structure-activity relationships elucidated from transepithelial short-circuit current measurements. Thus, this pathway is most probably the apical Na+-specific channel. The other pathway with lower affinity to the diuretic was relatively insensitive to modifications of the amiloride molecule, and the structure-activity relationships measured for the inhibition of this pathway were different from those reported for any other amiloride-blockable process. Other experiments have established that the Na+ flux with low affinity to amiloride is electrogenic and is not mediated by a Na+/H+ or Na+/Ca2+ exchanger, Na+-hexose cotransporter, or the Na+/K+-ATPase. The data indicate that tracer flux measurements in toad bladder membrane vesicles monitor, in addition to the well-characterized apical Na+ channels, another amiloride-blockable electrogenic Na+ transporter. This pathway could be responsible for the basolateral amiloride-blockable Na+ conductance recently observed in nystatin-treated bladders (Garty, H., Warncke, J., and Lindemann, B. (1987) J. Membr. Biol. 95, 91-103).  相似文献   

11.
A cation selective channel was identified in the apical membrane of fetal rat (Wistar) alveolar type II epithelium using the patch clamp technique. The single channel conductance was 23 +/- 1.2 pS (n = 16) with symmetrical NaCl (140 mM) solution in the bath and pipette. The channel was highly permeable to Na+ and K+ (PNa/PK = 0.9) but essentially impermeant to chloride and gluconate. Membrane potential did not influence open state probability when measured in a high Ca2+ (1.5 mM) bath. The channel reversibly inactivated when the bath was exchanged with a Ca(2+)-free (less than 10(-9) M) solution. The Na+ channel blocker amiloride (10(-6) M) applied to the extracellular side of the membrane reduced P(open) relative to control patches; P(control) = 0.57 +/- 0.11 (n = 5), P(amiloride) = 0.09 +/- 0.07 (n = 4, p less than 0.01), however, amiloride did not significantly influence channel conductance (g); g(control) 19 +/- 0.9 pS (n = 5), 18 +/- 3.0 pS (n = 4). More than one current level was observed in 42% (16/38) of active patches; multiple current levels (ranging from 2 to 6) were of equal amplitude suggesting the presence of multiple channels or subconductance states. Channel activity was also evident in cell attached patches. Since monolayers of these cells absorb Na+ via an amiloride sensitive transport mechanism we speculate that this amiloride sensitive cation selective channel is a potential apical pathway for electrogenic Na+ transport in the alveolar region of the lung.  相似文献   

12.
Summary In this paper we describe current fluctuations in the mammalian epithelium, rabbit descending colon. Pieces of isolated colon epithelium bathed in Na+ or K+ Ringer's solutions were studied under short-circuit conditions with the current noise spectra recorded over the range of 1–200 Hz. When the epithelium was bathed on both sides with Na+ Ringer's solution (the mucosal solution contained 50 m amiloride), no Lorentzian components were found in the power spectrum. After imposition of a potassium gradient across the epithelium by replacement of the mucosal solution by K+ Ringer's (containing 50 m amiloride), a Lorentzian component appeared with an average corner frequency,f c=15.6±0.91 Hz and a mean plateau valueS o=(7.04±2.94)×10–20 A2 sec/cm2. The Lorentzian component was enhanced by voltage clamping the colon in a direction favorable for K+ entry across the apical membrane. Elimination of the K+ gradient by bathing the colon on both sides with K+ Ringer's solutions abolished the noise signal. The Lorentzian component was also depressed by mucosal addition of Cs+ or tetraethylammonium (TEA) and by serosal addition of Ba2+. The one-sided action of these K+ channel blockers suggests a cellular location for the fluctuating channels. Addition of nystatin to the mucosal solution abolished the Lorentzian component. Serosal nystatin did not affect the Lorentzian noise. This finding indicates an apical membrane location for the fluctuating channels. The data were similar in some respects to K+ channel fluctuations recorded from the apical membranes of amphibian epithelia such as the frog skin and toad gallbladder. The results are relevant to recent reports concerning transcellular potassium secretion in the colon and indicate that the colon possesses spontaneously fluctuating potassium channels in its apical membranes in parallel to the Na+ transport pathway.  相似文献   

13.
We examined the interaction of heptanol and hydrostatic pressure on Na+ and Cl- transport in isolated toad skin. In the presence of Cl-, heptanol decreased short-circuit current (Isc) and total transepithelial resistance (Rt). However, in the absence of Cl- in the mucosal bath, heptanol increased Rt, although it retained the same inhibitory effect on Isc. When transepithelial active Na+ transport was blocked by amiloride, heptanol had no effect on Isc whether or not Cl- was present, whereas it decreased the shunt resistance (Rs) only in the presence of Cl- in the mucosal bath. Moreover, this effect of heptanol on Rs was significantly smaller in the presence of diphenylamine-2-carboxylate (DPC), a known Cl- channel blocker. Pressure also decreased Isc through inhibition of active Na+ transport, but it increased Rs. When heptanol and pressure were applied together, their inhibitory effects on Isc were additive, but their effects on Rs were antagonistic. Furthermore, when a transepithelial Cl- current was produced by reducing the Cl- concentration of the serosal bath, heptanol stimulated this current, which was reversibly inhibited by pressure or DPC addition to the mucosal bath. When the heptanol-stimulated Cl- current was first inhibited by pressure, subsequent DPC addition had less or no effect. These results suggest that one site of an antagonistic interaction of heptanol and pressure in toad skin is an apical membrane Cl- conductance.  相似文献   

14.
Summary Transepithelial electrogenic Na transport (INa) was investigated in the colon of the frog Xenopus laevis with electrophysiological methods in vitro. The short circuit current (Isc) of the voltage-clamped tissue was 24.2±1.8 A·cm-2 (n=10). About 60% of this current was generated by electrogenic Na transport. Removal of Ca2+ from the mucosal Ringer solution stimulated INa by about 120%. INa was not blockable by amiloride (0.1 mmol·l-1), a specific Na-channel blocker in epithelia, but a fully and reversible inhibition was achieved by mucosal application of 1 mmol·l-1 lanthanum (La3-). No Na-self-inhibition was found, because INa increased linearly with the mucosal Na concentration. A stimulation of INa by antidiuretic hormones was not possible. The analysis of fluctuations in the short circuit current (noise analysis) indicated that Na ions pass the apical cell membrane via a Ca-sensitive ion channel. The results clearly demonstrate that in the colon of Xenopus laevis Na ions are absorbed through Ca-sensitive apical ion channels. They differ considerably in their properties and regulation from the amiloride-sensitive Na channel which is typically found in the colon of vertebrates.Abbreviations G T transepithelial conductance - I sc short circuit current - I Na transepithelial Na-current - m mucosal - s serosal - PDS power density spectrum - f frequency - f c corner frequency of the Lorentzian component of the PDS - S(f) power density of the Lorentzian component of the PDS - So plateau value of the Lorentzian component of the PDS  相似文献   

15.
In the presence of the Na+-channel blocker amiloride, the short-circuit current across the skins of bullfrog tadpoles in metamorphic stages XIX–XXIV was subjected to fluctuation analysis. The resulting power spectra contained a Lorentzian component of which the plateau value (S0) decreased while the corner frequency (fc) increased as the mucosal amiloride concentration was increased from 0.5 to 24 μM. From the linear relationship between the fc values and the amiloride concentrations it was possible to determine the binding (k′01) and unbinding (k10) constants for amiloride to its receptor on the Na+ channel. With these parameters as well as short-circuit current and S0 values, the current through the individual Na+ channels (i) was calculated (average 0.58 pA). It did not increase significantly during late metamorphosis. The density of Na+ channels (M) in the apical membrane, on the other hand, increased significantly. It would appear that the increase in short-circuit current which occurs at this time is due primarily to an increase in amiloride-blockable Na+ channels. Unexpectedly, a Lorentzian component could be fitted to power spectra in amiloride-treated skins (stages XIX–XXI) which showed no amiloride-sensitive short-circuit current. Moreover, the typical increase in fc with the amiloride concentration did not occur in these animals.  相似文献   

16.
The effects of phenytoin on isolated Pleurodema thaul toad skin were investigated. Low (micromolar) concentrations of the antiepileptic agent applied to the outside surface of the toad epithelium increased the electrical parameters (short-circuit current and potential difference) by over 40%, reflecting stimulation of Na(+) transport, whereas higher (millimolar concentrations, outside and inside surface) decreased both electric parameters, the effect being greater at the inside surface (40% and 80% decrease, respectively). The amiloride test showed that the stimulatory effect was accompanied by an increase and the inhibitory effect by a decrease in the sodium electromotive force (ENa). It is concluded that the drug interaction with membrane lipid bilayers might result in a distortion of the lipid-protein interface contributing to disturbance of Na(+) epithelial channel activity. After applying the Na(+)-K(+)-ATPase blocker ouabain and replacing the Na(+) ions in the outer Ringer's solution by choline, it was concluded that both active and passive transport are involved in sodium absorption, although active transport predominates.  相似文献   

17.
In this study, electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula was investigated. In the ileum, a Na(+)-dependent, phloridzin- and amiloride-insensitive short-circuit current ( Isc) was present. Mucosal glucose stimulated a further phloridzin-sensitive, dose-dependent increase in Isc. A Na(+)-dependent, ouabain-sensitive Isc was also present in the caecum and colon. In the proximal and distal colon, amiloride (100 micro mol l(-1), mucosal) inhibited this Isc by 81+/-4% and 65+/-3%, respectively and the Ki for amiloride (approximately 1 micro mol l(-1)) was consistent with the inhibition of a classical epithelial Na(+) channel. In the caecum, 50% of the Isc was inhibited by amiloride (100 micro mol l(-1), mucosal). The amiloride-insensitive Isc in the colon was not due to electrogenic Cl(-) secretion, as serosal bumetanide (100 micro mol l(-1)) had no effect on the Isc. Furthermore, the secretagogues forskolin (10 micro mol l(-1)), carbachol (100 micro mol l(-1)) and dibutyryl-cAMP or dibutyryl-cGMP (100 micro mol l(-1)) did not stimulate electrogenic Cl(-) secretion by the colon. These results indicate that the transport properties of the hindgut of the possum differ significantly from those of eutherian mammals and may be associated with different functions of the hindgut of possums when compared to eutherian mammals.  相似文献   

18.
(1) Single myelinated nerve fibers of Rana esculenta were treated with the steroidal alkaloid batrachotoxin, and Na+ currents and Na+-current fluctuations were measured near the resting potential under voltage-clamp conditions. Between test pulses the fibres were held at hyperpolarizing membrane potentials. (2) The spectral density of Na+-current fluctuations was fitted by the sum of a 1/f component and a Lorentzian function. The time constant tau c = 1/(2 pi fc) obtained from the corner frequency fc of the Lorentzian function approximately agreed with the activation time constant tau m of the macroscopic currents. (3) The conductance gamma of a single Na+ channel modified by batrachotoxin was calculated from the integral of the Lorentzian function and the steady-state Na+ current. At the resting potential V = 0 we obtained gamma - 1.6 pS, higher gamma-values of 3.2 and 3.45 pS were found at V = --8 and --16 mV, respectively. (4) The conductance of a modified Na+ channel is significantly lower than the values 6.4 to 8.85 pS reported in the literature for normal Na+ channels. Hence, our experiments are in agreement with the view that batrachotoxin acts in an 'all-or-none' manner on Na+ channels and creates a distinct population of modified channels.  相似文献   

19.
The trophectoderm of the mouse blastocyst is a fluid transporting epithelium that is responsible for generating a fluid-filled cavity called the blastocoel. Vectorial transport of ions from the medium into the blastocoel generates an osmotic gradient that drives fluid across this epithelium. We report here that substitution of Na+ or Cl-, but not K+, in the medium halves the rate of blastocoel expansion in the mouse blastocyst. Entrance of Na+ into the trophectoderm may involve several routes, since both blastocoel expansion and 22Na+ uptake are decreased in the presence of the highly specific Na+/H+ exchanger inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, and to a lesser extent with the amiloride-sensitive Na+-channel blocker, benzamil. Uptake of 22Na+ manifests saturation kinetics as a function of extracellular Na+ concentration, whereas uptake of 36Cl- is linear. Furthermore, neither 4,4-diisothiocyanostilbene-2,2-disulfonic acid, which is an inhibitor of the Cl-/HCO3- exchanger, nor 2-(3,4-dichlorobenzyl)-5-nitrobenzoic acid, which is a Cl- -channel blocker, affect either blastocoel expansion or 36Cl- uptake. These results suggest that Na+ entry into the mouse blastocyst is carrier-mediated and probably involves several routes that include the Na+/H+ exchanger and possibly the Na+-channel. Chloride entry, however, may not be carrier-mediated and may occur through a paracellular route, i.e., between the trophectodermal cells.  相似文献   

20.
1. Diphenylamine-2-carboxylate (DPC), added to the mucosal side of the frog skin, increased reversibly the short-circuit current (I0), even in SO2-(4) Ringer. Amiloride blocked this effect. 2. The maximal stimulation was 140% of the control value and the EC50 was 0.26 mM DPC. 3. The stimulatory effect of DPC was additive to that of oxytocin. 4. The dose-response curves for amiloride determined in the absence and in the presence of 1 mM DPC showed an IC50 of 1.0 microM and 0.8 microM amiloride, respectively. 5. Thus DPC, a blocker of Cl- channels in various Cl-transporting epithelia, exerts a stimulatory effect on the amiloride-sensitive Na+ transport in frog skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号