首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
During acute experiments on unanesthetized cats, immobilized with myorelaxants, it was found that during rhythmic stimulation (8–14 Hz, duration: 10 sec) of the ventroposterolateral thalamic nucleus brief hyperpolarization is succeeded by depolarization in the pyramidal neurons of the sensorimotor cortex. Following this depolarization, rhythmic (approximately 3 Hz) paroxysmal depolarizing shifts in membrane potential are produced by ending stimulation, succeeded by protracted hyperpolarization and termination of rhythmic wave activity. Depolarization only is observed in glial cells, however, while hyperpolarization sets in after hyperpolarization is completed in the neurons. It is suggested that long-term changes in the membrane potential of cortical cells could make some contribution to the setting up and termination of rhythmic spike and wave activity.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 319–325, May–June, 1986.  相似文献   

2.
Intracellular response in neurons and glial cells of an isolated cortical slab to direct electrical stimulation of the slab following surface application of strychnine was investigated during experiments on immobilized unanesthetized cats. Strychnine induced single epileptiform discharges and after-discharges in the slab and in the neurons it contained in the form of large-scale paroxysmal depolarization shifts (PDS) in membrane potential (MP). Spontaneous summated epileptiform discharges and neuronal activity in the units examined were not very synchronized. Electrical stimulation induced generalized paroxysmal activity in the isolated slab. Neuronal PDS were accompanied by refractory periods, onset of which did not depend on MP level. Strychnine increased the number of neurons manifesting background activity in which action potentials were generated by rhythmic depolarizing MP waves of extrasynaptic origin. Epileptiform response in strychninized cortical isolated slabs to presentation of single stimuli is accompanied by major depolarization shifts in the MP of glial cells. Paroxysmal excitation is thought to be triggered in strychninized isolated cortical slabs by extrasynaptic factors and closely linked to altered concentration of extracellular potassium.I. I. Mechnikov University, Odessa. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 23–29, January–February, 1990.  相似文献   

3.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

4.
The evoked potential (EP) and the pulse activity of single auditory cortex neurons were recorded simultaneously in response to a click and to a tone for cats under nembutal and nembutal — chloralose anesthesia. Both extra- and intracellular taps were employed. The experiments showed that the reaction of auditory cortex neurons in response to a click lasts from 200 to 300 msec. It consists of pulse discharges from several groups of neurons. Out of 174 neurons observed 8 responded within 4 to 7 msec after a click (before the EP). One hundred and nine neurons reacted in the range from 7 to 25 msec which coincided with the initial electropositivity of the EP; 11 neurons were in the range from 40 to 100 msec and 4 were between 180 and 270 msec. Such a sequence of involvement of different neuron groups in the reaction is probably accounted for to a large extent by the time dispersion of the afferent volley. With an intracellular tap slow alterations of membrane potential were observed in the form of an EPSP with pulses together with subsequent hyperpolarization lasting 50 to 70 msec and slowly increasing depolarization that reached a maximum after 170 to 200 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 147–157, September–October, 1969.  相似文献   

5.
In surviving slices of rat hippocampus, isolated from 1 to 4 weeks after septal lesioning by ibotenic acid, extracellular and intracellular responses were recorded in region CA3. Spontaneous and evoked epileptiform focal discharges are described, synchronous with paroxysmal depolarization shifts (PDS) of the membrane potential and with burst activity of cells. It is shown that the development of synchronized population reactions and PDS have an "all or nothing" character. The values of the resting potential and input resistance of the neurons did not differ significantly from those of cells in the control group of slices. Histological analysis showed destruction of neurons in the dorsal part of the septum, with cells of the medial septum being unaffected. The role of intraseptal mechanisms in the generation of epileptiform activity in region CA3 of hippocampal slices is discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Department of Physiology and Biochemistry, University of Pisa, Italy. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 556–564, September–October, 1991.  相似文献   

6.
An astrocytic basis of epilepsy   总被引:23,自引:0,他引:23  
Hypersynchronous neuronal firing is a hallmark of epilepsy, but the mechanisms underlying simultaneous activation of multiple neurons remains unknown. Epileptic discharges are in part initiated by a local depolarization shift that drives groups of neurons into synchronous bursting. In an attempt to define the cellular basis for hypersynchronous bursting activity, we studied the occurrence of paroxysmal depolarization shifts after suppressing synaptic activity using tetrodotoxin (TTX) and voltage-gated Ca(2+) channel blockers. Here we report that paroxysmal depolarization shifts can be initiated by release of glutamate from extrasynaptic sources or by photolysis of caged Ca(2+) in astrocytes. Two-photon imaging of live exposed cortex showed that several antiepileptic agents, including valproate, gabapentin and phenytoin, reduced the ability of astrocytes to transmit Ca(2+) signaling. Our results show an unanticipated key role for astrocytes in seizure activity. As such, these findings identify astrocytes as a proximal target for the treatment of epileptic disorders.  相似文献   

7.
Application of penicillin solution to the motor cortex in rats evoked the appearance of interictal discharges and epileptic seizures. After administration of diazepam in a dose of 2 mg/kg, Na,K-ATPase activity in the unpurified synaptosomes fraction of the cortex in the zone of the focus was increased by practically 100% compared with the level of activity of the enzyme in the focus without diazepam. Interictal discharges and epileptic seizures underwent different changes following intramuscular injection of diazepam. The frequency and variability of amplitude of the interictal discharges increased after administration of diazepam, whereas epileptic seizures were depressed. This effect was potentiated with an increase in the dose of diazepam. It is suggested that the opposite action of diazepam on epileptic seizures and interictal discharges may be evidence that the mechanisms lying at the basis of the development of these phenomena are different.Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 349–357, July–August, 1980.  相似文献   

8.
Responses of 155 neurons 3 weeks after neuronal isolation of a slab of auditory cortex (area AI) to single intracortical stimulating pulses at the level of layer IV were studied in unanesthetized, curarized cats during paroxysmal electrical activity evoked by series of high-frequency (10–20 Hz) electrical stimulation by a current 2–5 times above threshold for the direct cortical response. In response to such stimulation a discharge of paroxysmal electrical activity, lasting from a few seconds to tens of seconds, appeared in the slab. As a rule it consisted of two phases — tonic and clonic. This indicates that cortical neurons can form both phases of paroxysmal cortical activity. Depending on behavior of the neurons during paroxysmal electrical activity and preservation of their ability to respond to intracortical stimulation at this time, all cells tested in the isolated slab were divided into four groups. Their distribution layer by layer and by duration of latent periods was studied. Two-thirds of the neurons tested were shown to generate spike activity during paroxysmal discharges whereas the rest exhibited no such activity. A special role of neurons in layer II in generation of paroxysmal activity in the isolated slab was noted. The view is expressed that at each moment functional neuronal circuits, independent of each other, exist in the slab and also, evidently in the intact cortex, which can interact with one another when conditions change.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 3–11, January–February, 1984.  相似文献   

9.
The effect of microiontophoretic application of cortisol to single neurons of the dorsal hippocampus on the character of distribution of interspike intervals in their discharges was studied in chronic experiments on rabbits. Cortisol modified the time structure of regular and rhythmic discharges of hippocampal neurons. Regularization of discharges in the form of bursting activity appeared as the result of cortisol in cells with irregular spontaneous activity. Activity of more than half of the neurons, in which bursting discharges corresponded in frequency to the theta-rhythm, was intensified as a result of microapplication of cortisol. In neurons discharging complex spikes, in which under normal conditions a phenomenon of reduction of spike amplitude was observed within each burst, no definite rule as regards changes in the time structure of the discharges could be observed after administration of the hormone. It is suggested that cortisol plays a modulating role in mechanisms of generation of spike activity by hippocampal neurons.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 628–635, November–December, 1981.  相似文献   

10.
Neuronal response in the strychninized cortical suprasylvian gyrus was investigated in experiments on immobilized and unanesthetized cats using intracellular techniques. Paroxysmal depolarizing shifts (PDS) in neuronal membrane potential were recorded, consisting of a bursting discharge and slow depolarization wave. It was found when using intracortical stimulation that PDS can accumulate and change in shape and size. Bursting discharges in PDS were induced by large-scale EPSP which could be distinguished from paroxysmal response. Data from presumably intradendritic readings demonstrated the presence of large-scale EPSP during the generation of epileptiform discharges in the cortex. In a proportion of cells, PDS were accompanied by hyperpolarizing potentials — apparently IPSP, since they undergo reversal with intercellular administration of Cl. The contribution of excitatory and inhibitory synaptic influences to paroxysmal neuronal response is discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiologiya, Vol. 22, No. 5, pp. 642–649, September–October, 1990.  相似文献   

11.
Responses of medullary neurons to microstimulation of the locomotor region by a current of up to 30 µA were studied by intracellular recording in turtles. The resting potential recorded in these neurons was from 22 to 42 mV. Depolarization PSPs (EPSPs) were recorded in 43 neurons, hyperpolarization PSPs (IPSPs) in 12, and mixed in 36. Synaptic discharges were observed in 29 neurons. Of these cells 11 generated action potentials without visible PSPs. The latent period of the PSPs was most frequently between 2 and 8 msec. The time from the beginning of the EPSP to the beginning of the action potential was 1–3 msec if the response index was high, but in the case of weaker stimulation, it began to fluctuate strongly and lengthened. Unitary EPSPs were recorded in 15 neurons and IPSPs in three. Their amplitude was 0.6–0.8 mV, from 2 to 12 times less than the depolarization threshold (1–7 mV). These results, together with those obtained previously by extracellular recording of medullary unit activity in turtles and cats, are used to discuss the possible mechanism of spread of locomotor activity.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 122–129, March–April, 1982.  相似文献   

12.
Spontaneous spike activity in three anterior (limbic) neurons of the thalamic nucleus was studied by means of extracellular recording during chronic experiments on anesthetized rabbits. Neurons of the anteroventral nucleus showed high mean rate (24.8±5.8 spikes/sec) and varying structure of spike discharges ("inactivating" bursts of discharges, modulations in delta- and theta-rhythms, and bursts of discharges with a spindle rhythm of 12–14 Hz). "Inactivating" bursts of discharges alternating with single discharges predominated in the activity of neurons of the anteromedial nucleus (mean rate 10.0±1.4 spikes/sec). Activity of the anterodorsal nucleus could be clearly distinguished by the predominance of high-frequency groups of spikes (mean group frequency 67±5 spikes/sec) with prolonged intervals between groups.Institute of Biological Physics, Academy of Sciences of the USSR, Puschino, Moscow Province. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 579–586, September–October, 1985.  相似文献   

13.
Background activity was recorded in 272 neurons of the ventrolateral thalamic nucleus before and after systemic haloperidol and droperidol injection at a cataleptic dose using intracellular techniques during chronic experiments on cats in a drowsy condition. Brief burster discharges lasting 5–50 msec and following on at a high intraburst spike rate (of 200–450 Hz) were characteristic of neuronal activity in intact animals. Regular discharges occurred at the rate of 2–2.5 Hz or occasionally 3–4 Hz in 15% of cells. Numbers of neurons with the latter activity pattern rose to 22 and 30%, respectively, following haloperidol and droperidol injection. Both irregular and prolonged (80–300 msec) regular discharges were recorded in one third of the total. A relatively low intraburst spike rate (of 60–170 Hz) was observed in 37% of cells following 10 days' haloperidol injection. These changes are thought to be produced by intensified inhibitory effects on neurons of the thalamic ventrolateral nucleus from the substantia nigra and reticular thalamic nucleus following blockade of dopaminergic and -adrenergic receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 675–685, September–October, 1989.  相似文献   

14.
Activity of lumbar spinal neurons was recorded extracellularly during late long-lasting discharges in efferent nerves in immobilized thalamic cats. Of the total number of cells tested, 70% changed their activity during late discharges. The activity of 35% of neurons was increased during late discharges in nerves to flexors, but inhibited during discharges in nerves to extensors. Responses of 27% of neurons were of the opposite character. Other neurons were found whose activity was increased (5%) and reduced (3%), respectively, during later discharges in both flexor and extensor nerves. Most interneurons which changed their activity during late discharges were located in lateral parts of the intermediate zone of gray matter and the ventral horn at a depth of 2.8 mm. The character of the afferent input to a neuron was found to depend on the late efferent discharges and activity of the neurons correlated with them. Neurons whose activity was unchanged during late discharges (30%) were mainly located rather more dorsally, at a depth of about 2.0 mm. The possible mechanisms of the participation of these groups of interneurons in the generation of late discharges are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 236–244, May–June, 1979.  相似文献   

15.
The dorsal cord and dorsal root potentials were recorded in immobilized thalamic cats during fictitious scratching evoked by mechanical stimulation of the ear. Depolarization of primary afferents was shown to be simulated by the central scratching generator. Antidromic spike discharges appeared at the peak of the primary afferent depolarization waves in certain afferent fibers. Similar discharges arise in the resting state in response to stimulation of limb mechanoreceptors. It is suggested that during real scratching primary afferent depolarization and antidromic spikes evoked by it may effectively modulate the level of the afferent flow to spinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 173–176, March–April, 1978.  相似文献   

16.
The background activity of 123 thalamic neurons was recorded in 30 patients with motor extrapyramidal disorders applying microelectrode techniques to neurosurgical practice. Recordings were taken from the ventro-oral anterior and posterior thalamic nuclei and the adjacent reticular nucleus. A computer analysis was performed of neuronal activity in 44 units and plots produced of autocorrelation and spectral density functions. In patients with parkinsonism and double athetosis, rhythmic activity was found in 48% of cells. A wide variety of regular fluctuations in background neuronal discharges was noted: in the range of theta and delta rhythms (5–7 and 1–4 Hz respectively) with a periodicity of seconds (2–10 sec) and decaseconds (15–40 sec). It was thought possible that several types of regular waves may coexist: phenomena of 2 or 3 accelerated waves and reduced frequency of spike activity of differing periodicity were observed in eight neurons within the same train of spikes. The origin and significance of rhythmically occurring changes in thalamic neuronal spike activity are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR; Institute of Neurosurgery, Ministry of Public Health of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 192–201, March–April, 1987.  相似文献   

17.
Activity of neuron pairs in the caudate nucleus, derived simultaneously by a single microelectrode, was investigated in experiments on lightly anesthetized, immobilized cats. Strong temporal correlation was shown to be characteristic of the spontaneous activity of a neuron pair if grouped discharges were present in that activity. If, however, spontaneous activity was characterized by impulses randomly distributed in time, temporal correlation was observed in only 50% of cases, it was weaker, and it reflected excitatory and inhibitory interactions equally. In many cases negative correlation was observed in discharges of neurons within the time interval of 0–4 msec. Electrical stimulation of the various afferent inputs of the caudate nucleus not only did not cause correlation to appear in the discharges of the neurons but, on the contrary, it abolished correlation which existed for that same pair of neurons discharging spontaneously. Comparison of the results with data in the literature indicates that, by the character of interaction of its neurons, the caudate nucleus is one of the group of associative nuclei of the brain.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 486–493, September–October, 1978.  相似文献   

18.
Responses of single units in the reticular and ventrolateral thalamic nuclei were studied in acute experiments on curarized cats before and after intravenous injection of small doses (0.5–15 mg/kg) of pentobarbital, with simultaneous derivation of activity by two electrodes. After injection of pentobarbital, unit activity in the reticular nucleus consisted of high-frequency grouped (52.5% of 40 neurons) or continuous (30%) discharges as long as barbiturate spindles were present in the electrocorticogram. Activity of only four neurons (10%) of this nucleus was inhibited during the presence of spindles. In all other neurons of the reticular nucleus (7.5%) the character of discharges was unchanged after injection of pentobarbital. The appearance of grouped discharges, repeated several times (66.5% of 40 neurons), or blocking of activity (30%) throughout the period of spindle recording was observed in neurons of the ventrolateral nucleus. The remaining neurons of that nucleus (3.5%) did not respond to intravenous pentobarbital. The appearance of high-frequency discharges in neurons of the reticular nucleus while spindles were recorded coincided with a period of silence in neurons of the ventrolateral nucleus (58.5% of 34 pairs of neurons). High-frequency electrical stimulation of the mesencephalic reticular formation led to asynchronous activation of neurons of the ventrolateral nucleus (82%) and inhibition of unit activity in the reticular nucleus (88%).I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 517–524, September–October, 1982.  相似文献   

19.
Characteristics of neuronal activity in an isolated cortical slab were investigated during the onset of seizure spikes induced by frequent and powerful stimulation of the slab during experiments on unanesthetized immobilized cats. A high degree of coordination between the activity of cellular elements was found in the focus of epileptiform activity studied: convulsive shifts in membrane potential exactly corresponding to electrocorticograms of convulsive activity waves were observed in all neurons studied using intracellular techniques. No action potentials occurred in the soma of any of these neurons, moreover. Bursting spike discharges were recorded from neurons of the isolated slab at the same time. Findings from extra- and intracellular recordings of activity in the same neurons showed that action potentials are generated during convulsive activity at certain trigger zones remote from the cell in question without involving the soma, from which convulsive shifts in membrane potentials were recorded simultaneously. Mechanisms possibly underlying the generation of spike activity in neurons of the isolated slab undergoing development of generalized convulsive state are discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 357–365, May–June, 1988.  相似文献   

20.
The dynamics of neuronal activity in the posterior hypothalamus in different phases of the sleep-wake cycle were investigated during experiments on free-ranging cats. The highest frequency discharges were found to occur in 89.3% of neurons belonging to this region during the stages of active wakefulness and emotionally influenced paradoxical sleep. These neurons become less active during restful wakefulness and the unemotional stage of paradoxical sleep; this reduced activity can be most clearly observed in the context of slow-wave sleep. It was found that 7.1% of test neurons discharged at the highest rate during the stage of active wakefulness. They did not achieve an activity level characteristic of active wakefulness during the period of paradoxical sleep, although activity level was higher than during other states. Only 3.6% of neurons followed the opposite pattern, with discharges succeeding more frequently in slow-wave sleep and activity reduced to an equal degree during wakefulness and paradoxical sleep. The neurophysiological mechanisms governing the sleep-wake cycle and how the posterior hypothalamus contributes to these mechanisms are discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 160–167, March–April, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号