首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 109 毫秒
1.
Gas exchange, water relations and leaf chemical characteristics were examined of twodominant psammophytes: Artemisia frigida Willd and A halodendron Turcz. ex Bess in Horqin sandy land, NeiMongol, China under different water regimes. The measurements were conducted by submitting the plantsto five different irrigation levels. A. fTigida was characterized by lower photosynthetic rate (Pn), lowertranspiration rate ( TR and lower shoot water potential (ψuw) relative to A. halodendron. Foliage of A frigdahad higher values of relative water deficit (RWD), bound water content (BWC), ratio of bound water contentto free water content (BWC/FWC) and integrated drought-resistant index (DI than that of A. halodendron.Water relations differed significantly between two species in response to soil water availability. ψw, BWCand BWC/FWC ratio of A halodendron exhibited large variation with gradual decrease of soil moisture.However, in terms of these parameters, A. fRIGIDA was characterized by higher capacity of water holding anddrought tolerance relative to A halodendron. Proline and total soluble sugar contents of A frigida and Ahalodendron tended to increase with decrease of soil moisture and the former had a larger increaseamplitude than the latter. This shows that A frigida has a higher osmotic regulation ability than A halodendron.Under the extreme drought conditions, ψw, RWD, BWC and BWC/FWC of two species were approximate,but soluble proteins degraded largely. A large amount of accumulation of organic matter, proline and totalsoluble sugars were observed in both A halodendron and A frigida. The increase in proline and total solublesugar contents and soluble protein degradation of A frigida far exceeded those of A. halodendron. Webelieve that the accumulated materials at this moment are mostly of nutrient substances available for therecovery of plants after the drought. This is one of the reasons why A halodendron plants died while Afrigida plants survived under extremely drought condition. Our results suggest that these ecophysiologicalfeatures of A frigida are favorable to its growth in the fixed sandy land compared with A halodendron, whichoften lost its dominance due to weak competition for water sources under lower soil water availability andare major factors resulting in replacement of A. halodendron by A. frigida in the later stage of sandyvegetation succession in Horqin.  相似文献   

2.
周海燕  赵爱芬 《生态学报》2002,22(6):894-900
一日内冷蒿和差不嘎蒿的光合速率(Pn)、蒸腾速率(E)和水分利用效率(WUE)在早或晚出现了最高值,而其余时间则变化低缓,原因归结于沙地环境因子和植物内部因子的共同作用。冷蒿的Pn和WUE日均值高于差不嘎蒿,E的日均值却低于差不嘎蒿,说明冷蒿在干旱环境下具有较高的物质生产量和节约用水的能力。自然状态下冷蒿各生长季的水势(ψω)和充分膨胀时的渗透势(ψπ^100)远低于差不嘎蒿,水分相对亏缺(RWD)、束缚水含量(BWC)、缚水与自由水的比值(BWC/FWC)元高于差不嘎蒿,表明其具有更强的抗旱性;干旱和旱后复水条件下差不嘎蒿的RWD、BWC和BEW/FWC产生大幅度波动;长期极端干旱条件下两才RWD、EWC和ψω终极植相近;长期淹水对冷蒿生理过程的影响更大些。干旱使两种牧草蛋白质发生分解,脯氨酸和可溶性糖大量累,其中冷蒿的累积量远远超过差不嘎蒿,这种累积特征可能正是两种牧草竞争机制的本质所在。  相似文献   

3.
差不嘎蒿(Artemisia halodendron)主要分布在呼伦贝尔沙地和科尔沁沙地的流动和半固定沙丘上, 是良好的乡土固沙半灌木, 也是退化沙地固定和植被恢复过程中的建群种。点格局分析方法是20世纪末发展起来的多尺度空间格局分析方法。通过对差不嘎蒿种群的点格局分析, 发现差不嘎蒿幼体的空间格局多为集群分布, 在各个尺度上都极为显著, 而随着差不嘎蒿龄级的增加, 其空间分布也逐渐显现为随机分布。差不嘎蒿相邻龄级的空间关系差异不显著, 而间隔龄级间则呈空间负相关。这与其幼体聚集, 成体随机分布的空间格局相一致。  相似文献   

4.
差不嘎蒿(Artemisia halodendron)主要分布在呼伦贝尔沙地和科尔沁沙地的流动和半固定沙丘上,是良好的乡土固沙半灌木,也是退化沙地固定和植被恢复过程中的建群种。点格局分析方法是20世纪末发展起来的多尺度空间格局分析方法。通过对差不嘎蒿种群的点格局分析,发现差不嘎蒿幼体的空间格局多为集群分布,在各个尺度上都极为显著,而随着差不嘎蒿龄级的增加,其空间分布也逐渐显现为随机分布。差不嘎蒿相邻龄级的空间关系差异不显著,而间隔龄级间则呈空间负相关。这与其幼体聚集,成体随机分布的空间格局相一致。  相似文献   

5.
细根寿命对细根周转具有重要影响, 是生态系统C分配格局和养分循环研究的重要内容。该文利用微管法研究了流动沙地和固定沙地生长的差不嘎蒿(Artemisia halodendron)灌丛细根生长的动态过程, 通过Kaplan-Meier方法估计了细根存活率和中位值寿命, 并做存活曲线, 用对数轶检验比较了不同生境、不同土壤层次和不同月出生细根寿命的差异程度, 同时分析了不同样地细根寿命同土壤全氮、有机质、体积含水量和容重的相关关系。结果表明, 流动沙地和固定沙地差不嘎蒿细根具有相似的存活曲线, 但在各观测点, 流动沙地的细根累积存活率均高于固定沙地, 流动沙地细根中位值寿命(47 d)显著高于固定沙地(35 d)。细根寿命同各样地的土壤全氮和土壤容重呈显著的负相关关系, 同土壤水分呈显著的正相关关系, 但多元回归分析表明, 土壤水分是引起细根寿命变异的关键因素。土层深度对流动沙地细根寿命没有显著影响, 但两生境深层30~50 cm的细根寿命均显著高于上层(10~30 cm)。不同出生月的细根寿命显著不同, 流动沙地和固定沙地细根寿命具有相似的季节变化规律, 春季(4、5月)细根的寿命最长(71 d), 秋季(8、9月)次之(61 d), 夏季(6、7月)最短(39 d)。  相似文献   

6.
以科尔沁沙地半固定沙丘和流动沙丘两种不同沙丘上的盐蒿(Artemisia halodendron)种群为研究对象,采用空间点格局方法研究了 0~20 m尺度上盐蒿种群的空间分布格局及其关联性.结果表明,半固定沙丘上盐蒿种群的数量远大于流动沙丘,不同生长发育阶段的种群结构呈偏正态分布,属于稳定型种群;流动沙丘上不同生长发...  相似文献   

7.
A comparative study on stomatal control under water deficit was conducted on grapevines of the cultivars Grenache, of Mediterranean origin, and Syrah of mesic origin, grown near Montpellier, France and Geisenheim, Germany. Syrah maintained similar maximum stomatal conductance (gmax) and maximum leaf photosynthesis (Amax) values than Grenache at lower predawn leaf water potentials, Ψleaf, throughout the season. The Ψleaf of Syrah decreased strongly during the day and was lower in stressed than in watered plants, showing anisohydric stomatal behaviour. In contrast, Grenache showed isohydric stomatal behaviour in which Ψleaf did not drop significantly below the minimum Ψleaf of watered plants. When g was plotted versus leaf specific hydraulic conductance, Kl, incorporating leaf transpiration rate and whole‐plant water potential gradients, previous differences between varieties disappeared both on a seasonal and diurnal scale. This suggested that isohydric and anisohydric behaviour could be regulated by hydraulic conductance. Pressure‐flow measurements on excised organs from plants not previously stressed revealed that Grenache had a two‐ to three‐fold larger hydraulic conductance per unit path length (Kh) and a four‐ to six‐fold larger leaf area specific conductivity (LSC) in leaf petioles than Syrah. Differences between internodes were only apparent for LSC and were much smaller. Cavitation detected as ultrasound acoustic emissions on air‐dried shoots showed higher rates for Grenache than Syrah during the early phases of the dry‐down. It is hypothesized that the differences in water‐conducting capacity of stems and especially petioles may be at the origin of the near‐isohydric and anisohydric behaviour of g.  相似文献   

8.
通过比较不同自然降水年份(极端干旱和极端湿润)19年生疏林草地樟子松的针叶δ13C、比叶面积和干物质含量,结合土壤含水量和地下水埋深,探讨了极端降水对樟子松水分利用的影响.结果表明:干旱年份(2009)樟子松林土壤含水量显著低于湿润年份(2010),但樟子松当年生针叶的δ13C在两年间没有显著差异,且两年相同月份间亦无显著差异;干旱年份当年生针叶的比叶面积显著低于湿润年份,而不同年份间干物质含量的差异不显著.在两种极端降水条件下,樟子松的水分利用效率没有明显变化,主要通过改变当年生针叶的比叶面积来适应降水量的变化.对于地下水埋深高于3.0m的疏林草地樟子松人工林生态系统,极端干旱不会严重影响樟子松的存活和生长.  相似文献   

9.
ABSTRACT

Background: Woody bamboos of the genus Chusquea grow along a broad range of elevations in the Venezuelan Andes. Their growth-form and density vary along the cloud forest – páramo gradient. In this article, we related ecophysiological traits and population genetic diversity information to explain the distribution of growth-form patterns of Chusquea in the Merida Andes, Venezuela.

Aims: We quantified differences in the ecophysiological response and genetic diversity of scandent cloud forest and shrub-like páramo bamboos of the genus Chusquea, taking in account the differences in their flowering patterns, growth-form and habitat.

Methods: We related low temperature resistance, water relations and leaf gas exchange variables to the growth-form, habitat, flowering patterns and genetic diversity in species of Chusquea. The genetic diversity study was based on Inter Sequence Simple Repeats and Random Amplified Polymorphic DNA markers analysis of cloud forest and páramo populations.

Results: Scandent cloud forest and shrub-like páramo species of Chusquea had a very similar ecophysiological response for all the variables analysed during wet and dry seasons and were capable of enduring freezing temperatures through moderate supercooling. Species associated with the cloud forest – páramo gradient maintained low stomatal conductance and transpiration rates that favoured high leaf water potentials, without limiting photosynthetic rates. Shrub-like bamboos growing above the continuous forest line had a small decline in net photosynthesis rates, associated with an increase in water use efficiency. Both scandent and shrub-like bamboos had a remarkably high genetic diversity, comparable to non-clonal species.

Conclusions: Species of Chusquea in the Venezuelan Andes are a physiologically relatively homogeneous group across a broad elevation gradient. Population genetic diversity appears to be more related with their flowering pattern and habitat conditions than with their growth form.  相似文献   

10.
Water-stressed maize (Zea mays L.) leaves showed a large decrease in leaf conductance during photosynthesis. Net CO2 uptake and evaporation declined fast at mild stress (=–0.6 to –1.0 MPa) and slower at more severe stress (=–1.0 to -1.2 MPa), whereas the CO2 concentration in the intercellular spaces (Ci) did not drop to the CO2 compensation point. The activities of the enzymes of photosynthetic carbon metabolism tested in this study dropped by approx. 30% at =-1.2 MPa. Glutamine synthetase activity was unaffected by water stress, whereas the activity of nitrate reductase was almost completely inhibited. The decline of enzyme activities in relation to was correlated with a concomitant decrease in the content of total soluble protein of the stressed leaves. The total leaf pools of malate, pyruvate and oxaloacetate decreased almost linearly in relation to , thus obviously contradicting the almost constant Ci. In comparison to the controls (=0.6 MPa) the content of citrate and isocitrate increaed markedly at =-0.9 MPa and decreased again at =-1.2 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PEP phosphoenolypyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

11.
The in vitro toxicity of the drinking water disinfection by products dichloroacetate (DCA) and trichloroacetate (TCA) were studied using the J774A.1 macrophage cell line. DCA and TCA were added to cell cultures at concentrations ranging between 8-32 mM and incubated for 24, 36 and 60 h. DCA and TCA effects on cellular viability, lactate dehydrogenase (LDH) release and superoxide anion (SA) production by the cells, as well as superoxide dismutase (SOD) activities of the cells were determined. DCA and TCA caused time- and concentration-dependent increases in cellular death, in LDH release and production of SA by the cells. The compounds also caused modulations in SOD activities of the cells, with increases observed at the lower concentrations and/or shorter periods of incubations and suppression with the higher concentrations and/or longer periods of incubation. The results of the study indicate that DCA and TCA induce macrophage activation and that the activation is associated with cellular toxicity. Also, DCA and TCA are found to be equitoxic to J774.A1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号