首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The newly-formed leaves on plantlets differentiated from shoot bud cultures of Betula pendula, when excised and grown on a fresh medium produced callus from the margins or regenerated leafy shoots, roots and plantlets. After 4 weeks, upon transfer to murashige and Skoog (MS) medium supplemented with 3-indoleacetic acid (IAA) + 6-(4-hydroxy-3-methyl-trans-2-enyl)aminopurine (zeatin) + 6-aminopurine (adenine), 15–20 plantlets were produced from each explant. Likewise, the roots also showed meristematic activity at several sites, and produced nodulated callus on MS + α-naphthaleneacetic acid (NAA) + 6-(3-methyl-2-butenyl-amino)purine (2-iP) + adenine, and ultimately differentiated plantlets. Anatomical studies showed that initiation of callus takes place by meristematic activity in epidermal cells of leaves, and cortical cells of roots. Cytological investigations revealed no change in chromosomal complement.  相似文献   

2.
Summary The developmental histology of somatic embryo (=embryoid) formation in cultured immature embryos of hybrid maize cultivars (Zea mays L.) is described. Embryos cultured on media containing 2% sucrose formed distinct globular embryoids. These embryoids arose either directly by divisions confined to the epidermal and the subepidermal cells at the coleorhizal end of the scutellum or from a soft and friable embryogenic callus produced by them. On media containing 6% sucrose divisions were initiated in the cells adjacent to the procambium of the cultured embryos. Subsequently, zones of meristematic cells also were observed in the region of the node and in the basal portion of the scutellum. Mature, well organized somatic embryos as well as a compact nodular type of embryogenic callus were produced as a result of localized meristematic activity along the tip of the scutellum toward the coleorhiza. Some embryos formed only the compact type of callus, and shoot primordia were organized later in the surface layers of this callus.Abbreviations CH casein hydrolysate - MS Murashige and Skoog's nutrient medium - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

3.
Summary Establishment of fast-growing, highly regenerable callus cultures was examined in Muscari armeniacum Leichtl. ex Bak. in order to develop an efficient genetic transformation system. High-frequency callus formation was obtained from leaf explants of cv. Blue Pearl on media containing 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC). Fast-growing, yellowish nodular callus lines and white friable callus lines containing a few somatic embryos were established on initiation medium supplemented with 4.5 μM 2,4-D and with 54 μM NAA, respectively. The yellowish nodular calluses vigorously produced shoot buds after transfer to media containing 0.44–44 μM 6-benzyladenine (BA), whereas the white friable calluses produced numerous somatic embryos upon transfer to plant growth regulator-free (PGR-F) medium. Histological observation of shoot buds and somatic embryos indicated that the former consisted of an apparent shoot meristem and several leaf primordia, and the latter had two distinct meristematic regions, corresponding to shoot and root meristems. Both shoot buds and somatic embryos developed into complete plantlets on PGR-F medium. Regenerated plants showed no observable morphological alterations. High proliferation and regeneration ability of these calluses, were maintained for over 2 yr.  相似文献   

4.
When tomato (Lycopersicon esculentum Mill.) callus or cell cultures were placed on media containing ribose as the sole carbon source, the tissues turned dark brown and ceased growth. However, after approximately 60 days bright green tissue able to grow on ribose emerged from 3 % of the brown necrotic callus tissue pieces plated. The selected tissue was highly organized, consisting of leafy primordia and associated meristematic tissues, sustained growth on ribose, and demonstrated the capacity to regenerate whole plants for at least 3 years. Cultures able to grow on ribose could not be selected from liquid suspension cultured tomato cells or from callus which had been mechanically macerated into cell aggregates containing less than approximately 100 cells. Plants regenerated from ribose adapted cultures were abnormal, having shortened internodes and thicker greener leaves. Regenerated plants were both male and female sterile.Abbreviations BAP N6-benzylaminopurine - CFM callusforming medium - IAA indole acetic acid - SDM shoot determination medium - RCM ribose containing medium  相似文献   

5.
Plant regeneration from embryogenic suspension cultures of dune reed   总被引:2,自引:0,他引:2  
Embryogenic callus, derived from mature seeds of dune reed (Phragmites communisTrinius) was used to establish suspension culture. Green shoot-forming type and albino shoot-forming type embryogenic callus of dune reed were selected carefully by the difference of shape and color of callus growing under light and mechanically dispersed before suspending in liquid MS medium supplemented with 1.0 mg l–12,4-D. They were subcultured every 5 days to remove mucilaginous material in the early culture stage. Both fine albino and green shoot-forming cell suspension lines of dune reed were composed of rapidly growing small cell aggregates that were densely cytoplasmic and potentially embryogenic. Globular somatic embryos were continuously produced in each liquid medium containing 1.0 mg l–1 2,4-D. The cell aggregates in fine albino cell suspension line (size below 300 m) were smaller than that of green shoot-forming cell suspension line (size between 300 and 800 m). Following transfer to a differentiation medium, both suspension cultures formed regenerating plants with normal roots and albinotic or green shoots, respectively.  相似文献   

6.
Summary Aiming at the genetic improvement of garlic cultivars, a cell suspension protocol was established which includes the induction of friable callus, establishment of cells in liquid medium, plating, regeneration, and bulb formation. Calluses of various textures from compact to friable and from green to yellowish were obtained by culturing explants excised from inner leaves of garlic bulbs on Marashig-Shoog (MS) medium with 2,4 dichlorophenoxy acetic acid (2,4-D), (1.1 mg/liter [5.0 μM]), picloram (1.2 mg/liter [5.0 μM]), and kinetin (2.1 mg/liter [10 μM]). Friable callus occurred on MS-A contained 2,4-D alone (1.0 mg/liter [4.52 μM]) and this callus was used to develop cell suspension cultures, which were maintained in liquid MS-B medium with a 2,4-D/benzyl adenine (BA) (0.5 mg/liter [2.25 μM]: 0.5 mg/liter [2.22 μM]) ratio. High plating efficiency was obtained on MS-C medium with different naphthalene acetic acid/BA combinations. Regeneration occurred after transfer of the caulogenic mass to MS-C medium containing 10 mg/liter (74.02 μM) and 20 mg/liter (148.04 μM) adenine for 60 days, followed by transfer to adenine-free medium. Plantlets transplanted to soil showed normal phenology. Shoots grown on modified MS medium supplemented with indolylbutryic acid (3.0 mg/liter [14.7 μM]) stimulated bulb formation by 30 days in culture.  相似文献   

7.
在分化条件下甜菊愈伤组织分生区细胞超微结构研究   总被引:2,自引:0,他引:2  
对甜菊(Steviarebaudiana)愈伤组织中尚未发生器官分化的分生细胞团进行了超微结构研究.结果表明,在器官分化条件下,愈伤组织中形成的分生区域的细胞体积小,细胞核大,核仁明显,且具核仁泡,部分细胞核中含有核内含物.大量小液泡分布在细胞的边周或散布于整个细胞中.液泡中通常含有陷入的细胞质成分和膜状物.部分液泡的形成与内质网膨大有密切关系.同时也观察到由内质网形成的多圈膜和双层膜包围细胞质成分的同心环结构.高尔基体及其小泡丰富,有时聚集分布在细胞某一区域.核糖体密集,有的聚集成多聚核糖体.因此,愈伤组织中分生区的细胞与分生组织中的液泡化和分裂的细胞类似.分生区细胞的另一明显特征是出现质膜内陷.推测这些超微结构特征可能反映了甜菊愈伤组织器官分化前的某些形态变化。  相似文献   

8.
Nodular meristematic callus was induced on the basal cut surface of apical shoot explants of salvia cultured on Murashige and Skoog (MS) medium supplemented with 4.5, 13.5, or 22.5 μM thidiazuron (TDZ). Cultures were incubated in the dark for 1 wk and then transferred to light conditions for 4 wk. A higher percentage of explants developing callus was observed on medium containing either 4.5 or 13.5 μM TDZ, although explants on 4.5 μM developed larger calluses. The callus was maintained on medium containing 4.5 μM TDZ and 0.45 mM ascorbic acid. Shoot differentiation, after each of three successive maintenance passages, was induced from callus grown on medium containing either 4.4 or 8.8 μM benzyladenine (BA). A greater number of shoots were harvested from callus differentiated on BA (4.4 or 8.8 μM) medium with 0.45 mM ascorbic acid added. Shoots developed roots on MS medium supplemented with 4.9 μM of indole-3-butyric acid. The addition of ascorbic acid to the shoot differentiation medium enhanced rooting, number of roots per shoot, and survival rate. Approximately 75% in vitro plantlets were acclimatized to ex vitro conditions. Histological investigations confirmed both adventitious meristem initiation during the callus induction phase, and subsequent organogenic shoot development on the differentiation medium. The novel protocol for the meristematic callus induction and plant regeneration in this study may be useful for biotechnological applications for salvia improvement via genetic transformation or mutagenesis and in vitro propagation approaches.  相似文献   

9.
Summary The cell ultrastructure in three types of callus obtained from leaf explants ofAesculus hippocastanum L. has been studied. Remarkable differences have been shown between the cells of the forerunner E1 callus and those of the callus arising from it, according to the culture conditions.The peculiar characteristics of E1 are the scarcity of intercellular spaces and the occurrence of autophagic vacuoles in the cells.An embryogenic friable callus (E2) is formed in time when E1 is maintained on solid culture medium. The E2 cells show cytological features typical of a higher metabolic level and contain starch. Diffused middle lamella digestion leads to the detachment of small embryogenic cell aggregates consisting of vacuolated parenchymatous-like cells and small meristematic cells which may be regarded as embryoids initials.Shaking E1 in the same liquid medium and subsequent culture on solid medium lead to the differentiation of a non-embryogenic callus (NE), whose cells are very large and highly vacuolated, devoid of starch and with organelle-rich cytoplasm. The NE callus shows a high degree of growth, but does not attain embryogenic competence in time.Abbreviations c cell - cr crystal - cw cell wall - d dictyosome - er endoplasmic reticulum - m mitochondrion - mb microbody - n nucleus - p plastid - s starch - v vacuole  相似文献   

10.
The distribution of several arabinogalactan protein and pectic epitopes were studied during organogenesis in androgenic callus of wheat. In cell wall of mature and degenerating parenchyma cells, the arabinogalactan epitopes JIM4, JIM14, JIM16 or LM2 were expressed differently according to the cells location. LM2 was observed also in meristematic cells of regenerated shoot buds and leaves. Anti-pectin JIM7 labelled the wall of meristematic cells but fluorescence was strongest in outer walls of surface cells of callus and shoot buds coated by extracellular matrix surface network (ECMSN). During leaves growth the ECMSN disappeared, and JIM7 fluorescence decreased. JIM5 epitope was abundant in the cell walls lining the intercellular spaces of callus parenchyma and in tricellular junctions within regenerated buds and leaves.  相似文献   

11.
Summary Protoplasts isolated from a totipotent embryogenic cell suspension culture of Zea mays L. (cultivar Dekalb XL82) underwent sustained cell divisions when cultured in liquid as well as agarose media. Optimal colony formation (5%) occurred in a liquid medium containing 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). A soft and unorganized callus was formed when the protocolonies were transferred to agar solidified suspension maintenance medium. Compact, organized and yellow to pale green folded structures and somatic embryos were formed upon subsequent transfer of this callus to a low 2,4-D medium. Clusters of somatic embryos germinated precociously but no plants were recovered.  相似文献   

12.
Summary The combination in the nuclear genome of a dominant resistance marker (to select against unfused wild-type cells) and a recessive deficiency marker (to select against unfused mutant cells) in a cell line should provide a system for selecting fusion hybrids between the mutant line and any wild-type line. To test this idea, we fused protoplasts from a non-morphogenic cell line of Nicotiana tabacum which was kanamycin resistant (by transformation) and deficient in nitrate reductase (NR-K+) with protoplasts from N. tabacum cv. Petit Havana clone SR1, which provided resistance against streptomycin as an additional selectable marker (NR+K-SR+). Putative hybrids were selected using a culture medium containing no available reduced nitrogen source and 50 mg/l kanamycin sulphate. After regeneration into plants, the hybrid character was demonstrated from: (i) the morphological variation of the regenerants; (ii) the chromosome number; (iii) the ability to grow on medium without a reduced nitrogen source and containing kanamycin sulphate at 50 mg/l; (iv) the presence of nitrate reductase activity; (v) the presence of the gene coding for neomycin phosphotransferase, which provides resistance to kanamycin sulphate; (vi) callus formation from leaves on medium containing 1 g/l streptomycin or 50 mg/l kanamycin sulphate; (vii) F1 plants containing nitrate reductase and the gene for neomycin phosphotransferase. Fusions between the mutant cell line (NR-K+) and three wild-type tobacco species and subsequent cultivation on medium containing no available nitrogen source but 50 mg/l kanamycin sulphate resulted in callus formation with all combinations, while hybrid plants were only regenerated when N. sylvestris was the fusion partner.  相似文献   

13.
An embryogenic suspension culture of Zea mays, genotype 4C1, was obtained from friable callus that was cultured on solid medium and had been obtained from zygotic embryos. The suspension contained non-dividing elongated cells, clusters of dividing isodiametric cells, and globular, ovoid, and polar stages of somatic embryos. The single somatic embryos were blocked in shoot meristem formation: when transferred to regeneration medium they developed a root and, at the shoot side, a green cap with meristematic cells, but a scutellum and leaf primordia were not formed. In medium containing 2,4-dichlorophenoxy acetic acid, somatic embryos formed embryogenic callus aggregates, consisting of globular stage somatic embryos attached to each other via undifferentiated callus cells. These somatic embryos developed into mature embryos with the zygotic histological characteristics, such as scutellum and leaf primordia, in maturation medium, and then regenerated into plants in regeneration medium. By omitting the maturation phase, regeneration occurred via organogenesis. Polyembryos, i. e. embryos attached to each other without callus tissue in between, behaved as single somatic embryos. It is concluded that the attached callus tissue provides a factor that stimulates scutellum and leaf primordia formation.Abbreviations CMM callus maintenance medium - 2,4D 2,4-dichlorophenoxy acetic acid - PCV packed cell volume - MS Murashige and Skoog medium  相似文献   

14.
Arabinogalactan proteins (AGPs) are important proteoglycans regulating somatic embryogenesis in diverse plant species. Embryogenic cells of somatic embryos are covered by special extracellular cell wall layer called extracellular surface matrix network (ECMSN) at their early developmental stages. Here we show that highly embryogenic cell line AC78 of hybrid fir (Abies alba × Abies cephalonica) differs from very low-embryogenic cell line AC77 in the abundance, subcellular localization and deposition of subset of secreted AGPs. A specific AGP epitope containing Gal residues and reacting to Gal4 antibody is secreted and deposited into ECMSN, which covers the surface of the embryogenic cells showing high embryogenic and regeneration capacity in the cell line AC78. On the other hand, this Gal4 AGP epitope was not secreted and/or found on the surface of meristematic cells showing low embryogenic and regeneration capacity in the cell line AC77, as well as on the surface of non-embryogenic suspensor cells and callus cells in both cell lines AC77 and AC78. As a positive control, we have used another AGP epitope LM2 (containing glucuronic acid) showing no significant differences in these two Abies hybrid lines. This study defines specific AGPs containing β-(1→6)-galactotetraosyl group as a first molecular component of ECMSN covering embryogenic cells in gymnosperms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Embryogenesis occurred in Nigella sativa L. (Fam. Ranunculaceae) leaf callus tissue when coconut milk was replaced from the Murashige and Skoog's (MS) medium by casein hydrolysate. On MS + IAA (0.5 mg/l) + casein hydrolysate (100 and 500 mg/l) medium, tissue gained a capacity of growing embryoids for a pro-longed culture period. At a concentration of 1000 mg/l casein hydrolysate suppressed the differentiating capacity after the fifth subculture. 2.4-D and kinetin had inhibitory effects on morphogenesis. Histology of the differentiated tissue revealed that the origin of roots, shoot buds and leaves were from groups of meristematic cells whereas embryoids were initiated by the repeated division of a single cell.  相似文献   

16.
Transformation of sweet potato tissues with green-fluorescent protein gene   总被引:3,自引:0,他引:3  
Summary The expression of the green-fluorescent protein (GFP) gene from Aequorea victoria (jellyfish) was analyzed by transient and stable expression in sweet potato Ipomoea batatas L. (Lam.) ev. Beauregard tissues by electroporation and particle bombardment. Leaf and petiole segments from in vitro-raised young plantlets were used for protoplast isolation and electroporation. Embyrogenic callus was also produced from leaf segments for particle bombardment experiments. A buffer solution containing 1×106 protoplasts ml−1 was mixed with plasmid DNA containing the GFP gene, and electroporated at 375 V cm−1. Approximately 25–30% of electroporated mesophyll cell protoplasts subsequently cultured in KM8P medium regenerated cell walls after 48 h. Of these, 3% emitted bright green fluorescence when exposed to UV-blue light at 395 nm. Transformed cells continued to grow after embedding in KM8P medium solidifed with 1.2% SeaPlaque agarose. Stable expression of GFP was observed after 4 wk of culture in approximately 1.0% of the initial GFP positive cells (27.5 GFP positive micro callases out of 3024 cells which transiently expressed GFP 48 h after electroporation). In a separate experiment, 600–700 bright green spots were observed per plate 48 h after bombarding leaf segments or embryogenic cellus. In bombarded cultures, several stable GEP-expressing sectors were observed in leafderived embryogenic callus grown without selection for 4 wk. These results show that GFP gene expression can occur in various sweet potato tissues, and that it may be a useful sereenable marker to improve transformation efficiency and obtain transgenic sweet potato plants.  相似文献   

17.
Light has been found to increase the proportion of tracheary elements differentiating in callus cultures derived from xylem-parenchyma of Pinus radiata D. Don grown on an induction medium containing activated charcoal but no phytohormones. The differentiation rate increased from 20% when callus was grown in darkness to 45% when callus was grown with a 16 h or 24 h photoperiod. When callus was grown with a 16 h photoperiod, tracheary elements were observed 2 days after transfer of callus to the induction medium, as compared to 5 days when callus was cultured in darkness. The differentiation rate was also influenced by the concentration of activated charcoal added to the induction medium, the optimum concentration being 5 g l−1. Exclusion of activated charcoal from the induction medium decreased the differentiation rate to 2%. The activities of the lignin-related enzymes L-phenylalanine ammonia lyase and cinnamyl alcohol dehydrogenase were significantly higher in cell cultures grown with a 16 h photoperiod as compared to when grown in darkness. The results show that light had a stimulating effect on tracheary element differentiation and the activities of lignin-related enzymes in P. radiata callus cultures. The new growth conditions markedly improve this cell culture system and make it particularly useful for functional gene testing and cell-wall analysis of in vitro grown tracheary elements of coniferous gymnosperms.  相似文献   

18.
Somatic embryoids differentiated in suspension cultures of G. klotzschianum after 3–4 weeks of culture in a liquid medium containing glutamine (optimally, 10–15 mM). Embryogenesis occurred after a preculture of callus on a medium containing 10 mg/l of the cytokinin, 2iP. The embryoids had meristematic regions, a well formed epidermis, and formed roots and vestigial leaves. Asparagine was much less effective than glutamine in promoting embryoid differentiation. The presence of 2,4-D in the medium resulted in increased vigor of the suspension cultures and subsequently in the formation of many embryoids, but does not seem to be necessary for somatic embryogenesis in cotton.Technical Article 14646 from the Texas Agricultural Experiment Station  相似文献   

19.
Summary Data from cytological and biochemical analyses are presented on the behaviour of nuclear DNA during the differentiation ofVicia faba root cells. From the terminal 10.5 mm of the root, three segments were dissected by cutting transversely the root at 0.5 (segments I, meristematic cells), 4.5 (segment II, both meristematic and differentiating cells) and 10.5 mm (segment III, differentiating and/or differentiated cells) from the tip. Cytophotometric determinations of Feulgen absorptions in cell nuclei of the three root segments, carried out in preparations subjected to hydrolysis curve, revealed a lesser amount of nuclear DNA in differentiating cells when compared to the meristematic ones. Analyses of the reassociation kinetics of the DNAs extracted separately from the three root segments showed differences in the frequency of highly repeated sequences, which amount to 11.0, 8.6, and 7.5% of the total DNA in segments I, II, and III, respectively. Density gradient centrifugations in CsCl revealed a lighter satellite in the DNAs from segments I and II (ca. 5.4 and 3.8% of the total DNA, respectively) and no satellite in the DNA from segment III. It is suggested that underrepresentation of repeated DNA sequences occurs in differentiating cells and is a determining factor of the discharge of a cell from the mitotic activity.  相似文献   

20.
An efficient protocol for Kentucky bluegrass (Poa pratensis L.) in vitro culture was established using shoot apices of seedlings as explants. The optimal procedure of this protocol for majority of the genotypes was that meristematic cell clumps and small calluses were firstly induced from the bases of explants on initial culture medium supplemented with 0.9 μM 2,4-d and 8.9 μM 6-BA for 20 d, then were separated and transferred to shoot clumps induction medium containing 8.9 μM 6-BA for the formation of multiple shoot clumps. The percentage of multiple shoot clumps and numbers of shoots per clump were deeply related with the combinations of different plant growth regulators, duration of initial culture, the intensity of illumination and genotypes. Histological observation of the induced explants revealed that the meristematic cell clumps were produced from repeated division of the cortical cells and original meristematic primodium cells of explants, and the multiple shoots were formed via organogenesis pathway in the meristematic cell regions of cultures on shoot clumps induction medium. In this study, plantlets were efficiently regenerated on large scale from seven cultivars of Kentucky bluegrass. Hence the meristematic cell clumps and small calluses in this protocol could be considered good targets for genetic transformation of Kentucky bluegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号