首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anticancer drug adriamycin (ADR) is selectively toxic to glomerular cells when administered intravenously (5 mg/kg b.w.) to female MWF/Ztm rats. Recent data have shown that the proteinuria associated with the lesion does not occur in cortical glomeruli, suggesting the selective injury of juxtamedullary glomeruli. In the present study, the effect of ADR on glomerular metabolism was studied with special reference to possible differences between cortical and juxtamedullary glomeruli. On day 7 after ADR treatment, cortical and juxtamedullary glomeruli were separately isolated by the sieving method and 14C glucose oxidation to 14CO2 and the incorporation of 3H proline into macromolecules were measured in vitro and used to study target selective injury in ADR-treated rats compared to control rats. The investigations revealed differences in the response of cortical and juxtamedullary glomeruli to ADR. ADR treatment increased proline incorporation over a 4-hour incubation period in both glomerular populations compared to controls, but the effect was significantly (p less than 0.05) more pronounced in juxtamedullary glomeruli (juxtamedullary: 187 +/- 8% of control; cortical: 167 +/- 4% of control). Glucose oxidation was enhanced after 4 h only in juxtamedullary glomeruli (juxtamedullary: 132 +/- 3% of control; cortical: 82 +/- 10% of control). These data show that glomerular damage caused by ADR is associated with a stimulating effect on glomerular metabolism which is more marked in juxtamedullary than in cortical glomeruli, thus indicating a heterogenous response of different glomerular populations and supporting the concept that the selective damage of juxtamedullary glomeruli accounts for the proteinuria.  相似文献   

2.
Modest maternal dietary protein restriction in the rat leads to hypertension in adult male offspring. The purpose of this study was to determine whether female rats are resistant to developing the increased blood pressure seen in male rats after maternal protein restriction. Pregnant rats were fed a normal protein (19%, NP) or low-protein (8.5%, LP) diet throughout gestation. Renal renin protein and ANG II levels were reduced by 50-65% in male LP compared with NP pups, but were not suppressed in female LP compared with female NP. Mean arterial pressure in conscious, chronically instrumented adult female offspring (22 wk) was not different in LP (LP: 120 +/- 3 mmHg vs. NP: 121 +/- 2 mmHg), and glomerular filtration rate was also not different in LP vs. NP. The number of glomeruli per kidney was similar in adult LP and NP female offspring (LP: 26,050 +/- 2,071 vs. NP: 26,248 +/- 1,292, NP), and individual glomerular volume was also not different (LP: 0.92 +/- 0.11 10(6) microm(3), LP vs. NP: 1.07 +/- 0.11 10(6) microm(3)); the total volume of all glomeruli per kidney was also not significantly different. Thus female rats are relatively resistant to the programming for adult hypertension by perinatal protein restriction that we have described in males. This resistance may be due to the fact that modest maternal protein restriction does not reduce the number of glomeruli with which females are endowed as it does in males. The intrarenal renin-angiotensin system during development may play a key role in this protective effect of female gender.  相似文献   

3.
Glomerular filtration rate (GFR) in response to adenosine precursor, NAD, and glomeruli contractility in response to adenosine were evaluated in streptozotocin-induced diabetic rats with severe (blood glucose 27.8 +/- 1.2 mmol/L) and moderate hyperglycaemia (18.2 +/- 0.9 mmol/L) compared with nondiabetic (ND)-rats. In anaesthetised rats, basal GFR was greater in moderately diabetic rats compared with severely diabetic rats (p < 0.05) and ND-rats (p < 0.02). Intravenous infusion of 5 nmol x min(-1) x kg(-1) NAD reduced GFR and renal plasma flow (RPF) in diabetic rats but had no effect on these parameters in ND-rats. Moreover, NAD-induced reduction of GFR and RPF was greater in rats with severe diabetes (41% and 30%, respectively) than in with moderate diabetes (25% and 26%, respectively). Theophylline (0.2 micromol x min(-1) x kg(-1) ) abolished renal response to NAD. Isolated glomeruli contraction in response to adenosine, assessed by glomerular 3H-inulin space reduction, was lowered in moderately diabetic-group and enhanced in severely diabetic-group. compared with ND-group (p < 0.05). Adenosine A1-receptor antagonist DPCPX inhibited adenosine-induced glomeruli contraction. This differential response of diabetic renal glomeruli to adenosine suggests that impaired glomerular contractility in response to adenosine could be responsible for hyperfiltration in moderate diabets, whereas, the increased adenosine-dependent contractility of glomeruli in severe diabetes may increase the risk of acute renal failure in this condition.  相似文献   

4.
To prevent complement-mediated autologous tissue damage, host cells express a number of membrane-bound complement inhibitors. Decay-accelerating factor (DAF, CD55) is a GPI-linked membrane complement regulator that is widely expressed in mammalian tissues including the kidney. DAF inhibits the C3 convertase of both the classical and alternative pathways. Although DAF deficiency contributes to the human hematological syndrome paroxysmal nocturnal hemoglobinuria, the relevance of DAF in autoimmune tissue damage such as immune glomerulonephritis remains to be determined. In this study, we have investigated the susceptibility of knockout mice that are deficient in GPI-anchored DAF to nephrotoxic serum nephritis. Injection of a subnephritogenic dose of rabbit anti-mouse glomerular basement membrane serum induced glomerular disease in DAF knockout mice but not in wild-type controls. When examined at 8 days after anti-glomerular basement membrane treatment, DAF knockout mice had a much higher percentage of diseased glomeruli than wild-type mice (68.8 +/- 25.0 vs 10.0 +/- 3.5%; p < 0.01). Morphologically, DAF knockout mice displayed increased glomerular volume (516 +/- 68 vs 325 +/- 18 x 10(3) microm(3) per glomerulus; p < 0.0001) and cellularity (47.1 +/- 8.9 vs 32.0 +/- 3.1 cells per glomerulus; p < 0.01). Although the blood urea nitrogen level showed no difference between the two groups, proteinuria was observed in the knockout mice but not in the wild-type mice (1.4 +/- 0.7 vs 0.02 +/- 0.01 mg/24 h albumin excretion). The morphological and functional abnormalities in the knockout mouse kidney were associated with evidence of increased complement activation in the glomeruli. These results support the conclusion that membrane C3 convertase inhibitors like DAF play a protective role in complement-mediated immune glomerular damage in vivo.  相似文献   

5.
Kidney from normal male albino rats, of body weight 170-200 g, was fixed by arterial perfusion with buffered tannic acid-glutaraldehyde, and postfixed with osmium tetroxide. Random and isotropic ultrathin sections from 23 different glomeruli from five rats were mounted on slot grids for staining and electron microscopy. Prints of whole glomeruli at a magnification of 3,909 were analyzed by stereological methods. The mean glomerular volume was (8.048 +/- 0.474) X 10(5) mum3 if the glomeruli are treated as spheres. The area of the basement membrane was 0.281 +/- 0.017 mm2 per glomerulus, of which 0.184 +/- 0.011 mm2 represents peripheral basement membrane. The aggregate epithelial slit length per glomerulus was 65.19 +/- 3.84 cm, of which 48.69 +/- 2.87 cm represents epithelial slits abutting on the peripheral basement membrane. Assuming that a slit diaphragm is 390 A wide, and that the pores of the slit diaphragm represent 26% of its area, the mean pore area is 3.96 cm2, of which 2.96 cm2 represents the area of peripheral pores. These findings are discussed in the context of the hydrodynamic theory of glomerular ultrafiltration. We conclude that the porous substructure of the glomerular slit diaphragm is significant in determining the hydraulic conductivity of the glomerulus and hence also solute flux during ultrafiltration.  相似文献   

6.
Several lines of evidence suggest that increased neuraminidase activity may be responsible for the loss of glomerular N-acetylneuraminic acid (AcNeu) observed in various glomerular diseases. However, virtually no information is available on the activity of neuraminidase in glomeruli or the potential role of this enzyme in glomerular pathophysiology. Utilizing 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (4MU-AcNeu) as substrate, we defined optimal assay conditions and characterized neuraminidase activity in glomeruli and, for comparison, in other renal fractions and liver. Neuraminidase activity in glomeruli, cortex and tubules was maximal at pH 4.4. The Km for 4MU-AcNeu was estimated to be 195 microM for glomeruli and 226 microM for cortex. Glomerular neuraminidase was inhibited by AcNeu (90% at 25 mM) and high concentrations of Triton X-100 (26% at 0.5%), but unaffected by CaCl2, EDTA or N-ethylmaleimide (each 1 mM). Neuraminidase activity (nmol/h per mg of protein; mean +/- S.E.M.) in normal rat kidney was: cortex, 14.47 +/- 0.76; medulla, 7.85 +/- 0.64; papilla, 2.64 +/- 0.11; tubules, 13.79 +/- 0.70; glomeruli, 5.57 +/- 0.28. In comparison, neuraminidase activity in rat liver was 2.58 +/- 0.14. Puromycin aminonucleoside (PAN)-induced nephrotic syndrome is a model of glomerular disease in which the loss of glomerular AcNeu is well documented. In two separate studies, we observed no change in the specific activity of neuraminidase in either glomeruli or cortex isolated from rats treated with PAN (15 mg/100 g, intraperitoneally) and killed at either the onset or the peak of proteinuria. Results were similar whether neuraminidase activity was expressed per mg of protein or per microgram of DNA.  相似文献   

7.
In the female adult rat, renal compensatory hypertrophy is greatly enhanced by hyperadrenocorticism elicited by the administration of ACTH given at a dose of 18 Y/100 g BW/d for 7 days after uninephrectomy (UN). This renotrophic effect of ACTH is particularly prominent in rats drinking a NaCl solution (9 g/l). In the present experiments, we performed histomorphometrical measurements of the glomerular tuft (GT) and the proximal tubule (PT) in the hypertrophying kidney (HK) remaining 7 days after UN in 10 rats treated with ACTH and 7 control animals. The histologic preparations were examined under light microscopy with the "Kontron" image analyzer. ACTH increased the weight of the HK (1213.8 +/- 20.3 mg versus 1037.3 +/- 13.3, p less than 0.001) and determined an enlargement of the cross sectional area of the GT (12559 +/- 3351.3 mu2 versus 10486 +/- 407.5, p less than 0.01) and of the epithelial area of the PT (1751 +/- 40.8 mu2 versus 1586 +/- 41.5, p less than 0.025). These morphometrical data are consistent with the increased Protein/DNA ratio - a marker of cellular hypertrophy - found in other rats studied under the same experimental conditions. The increased weight gain of the HK elicited by ACTH is related to the hypertrophy of the epithelial cells of the PT and possibly to an enlargement of the glomeruli.  相似文献   

8.
Production of 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) and prostaglandin E2 (PGE2) was measured by radioimmunoassay in supernatants of isolated glomeruli from rats with streptozocin-induced diabetes and non-diabetic rats. Production of 6-oxo-PGF1 alpha by discs of aortas from these rats was measured at the same time. As shown before, aortic discs from diabetic rats produced significantly less 6-oxo-PGF1 alpha than aortic discs from non-diabetic rats (diabetic 1.99 +/- SEM 0.27 ng v non-diabetic 2.92 +/- 0.46 ng/mg net weight aorta; p less than 0.05). In contrast production of 6-oxo-PGF1 alpha by isolated glomeruli was not reduced in the diabetic rats (diabetic 77 +/- 7 pg v non-diabetic 70 +/- 8 pg/micrograms glomerular DNA). Similarly production of PGE2 was not diminished in the diabetic glomeruli (diabetic 1.20 +/- 0.15 ng v non-diabetic 0.91 +/- 0.12 ng/microgram glomerular DNA). It is concluded that regional differences in production of prostacyclin and 6-oxo-PGF1 alpha occur in experimental diabetes. Diminished prostacyclin production may contribute to the increased susceptibility of diabetic patients to atherosclerosis but is less likely to have a role in the pathogenesis of microangiopathy.  相似文献   

9.
To test the hypothesis that activation of the endothelin type A (ET(A)) receptor contributes to decreased renal excretory function and increased blood pressure in sensory nerve-degenerated rats fed a high-salt diet, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg s.c.) on the first and second day of life. After being weaned, vehicle or CAP-treated rats were fed a normal (NS, 0.5%) or a high- (HS, 4%) sodium diet for 2 wk with or without ABT-627 (5 mg x kg(-1) x day(-1), a selective ET(A) receptor antagonist). Systolic blood pressure increased in CAP-treated rats fed a HS diet (CAP-HS) compared with vehicle-treated rats fed a HS diet (CON-HS, 145 +/- 7 vs. 89 +/- 5 mmHg, P < 0.05). Creatinine clearance and fractional sodium excretion (FE(Na)) decreased in CAP-HS rats compared with CON-HS rats (creatinine clearance, 0.54 +/- 0.05 vs. 0.81 +/- 0.09 ml x min(-1) x 100 g body wt(-1); FE(Na), 8.68 +/- 0.99 vs. 12.53 +/- 1.47%, respectively; P < 0.05). Water and sodium balance increased in CAP-HS rats compared with CON-HS (water balance, 20.2 +/- 1.5 vs. 15.5 +/- 1.9 ml/day; sodium balance, 11.9 +/- 3.1 vs. 2.4 +/- 0.3 meq/day, respectively; P < 0.05). The endothelin (ET)-1 levels in plasma and isolated glomeruli increased by about twofold in CAP-HS rats compared with CON-HS rats (P < 0.05). ABT-627 prevented the decrease in creatinine clearance and FE(Na), the increase in water and sodium balance, and the increase in blood pressure in CAP-HS rats (P < 0.05). Therefore, the blockade of the ET(A) receptor ameliorates the impairment of renal excretory function and prevents the elevation in blood pressure in salt-sensitive hypertension induced by degeneration of sensory nerves, indicating that the activation of the ET(A) receptor impairs renal function and contributes to the development of a salt-induced increase in blood pressure in this model.  相似文献   

10.
Increased microalbuminuria is seen early in rats with both streptozotocin-induced and genetic (Bio-Breeding) diabetes. This study examines the roles of angiotensin II-dependent mechanism(s) and sulfation of glomerular proteoglycans in this phenomenon, as both processes have been implicated by several lines of circumstantial evidence. Anionic sites in the glomerular basement membrane, attributed to the presence of heparan sulfate, were quantitated by polyethyleneimine staining at 15, 21, and 70 days of diabetes in rats treated with streptozotocin, with or without insulin, and at 70 days in the Bio-Breeding rats. All diabetic rats developed increased microalbuminuria: control, 0.08 +/- 0.03 microgram/mL glomerular filtration rate, mean +/- SD; streptozotocin without insulin at 15 days, 0.92 +/- 0.06 microgram/mL (p < 0.05); streptozotocin with insulin at 21 days, 0.61 +/- 0.37 microgram/mL (p < 0.05 vs. control). At 70 days, both the Bio-Breeding and the streptozotocin rats sustained their microalbuminuria to the same degree (p < 0.05 vs. control). Enalapril (250 mg/L) in the drinking water of diabetic animals did not reduce the microalbuminuria. Although the polyethyleneimine-stained heparan sulfate sites decreased significantly in the streptozotocin rats, they remained unchanged in the Bio-Breeding rats. To determine the cause of reduced heparan sulfate staining, the in vitro synthesis and degree of sulfation of proteoglycans by glomeruli isolated from control and streptozotocin diabetic rat kidneys were compared. The amount of heparan sulfate synthesis and degree of sulfation were unchanged in diabetic glomeruli, although lower incorporation into the extracellular matrix and greater secretion into the medium were noted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The calcium channel blockers have individual pharmacological and therapeutic properties that may vary, but as a group, they are effective antihypertensive agents in patients with renal disease. Their effects on the kidney may extend beyond BP reduction alone. Fifteen one-year-old male spontaneously hypertensive rats (SHR) were separated in three groups: Initial control group (IC), Final control group (FC, SHR received standard rat chow and fresh water ad libitum during 15 weeks), Amlodipine group (Aml, SHR) received 0.2 mg/kg/day of amlodipine in addition to food and water during 15 weeks. The glomerular number was estimated using the disector method. In the Control group, the BP level increased almost 20 per cent in the first six weeks (from 186 +/- 11 to 223 +/- 16 mmHg, p<0.01) and then BP level increased almost 15 percent until week 15 (from 223 +/- 16 to 258 +/- 20 mmHg, p<0.01). In the same period, the Aml group showed a progressively low BP, reaching a level almost 50 per cent lower in the week 15 than in the week 1 (from 190 +/- 15 to 101+/-8 mmHg, p<0.01). Amlodipine treatment significantly decreased the serum creatinine, more than 12 per cent lower than the FC group (from 70.4 +/- 6.2 to 61.4 +/- 5.2 micromol/L, p<0.05). However, proteinuria was not different when groups were compared. The FC group reached a glomerular number almost 20 percent smaller than the IC and Aml groups (from 35 x 10(3) +/- 7 x 10(3) in IC group, 34 x 10(3) +/- 4 x 10(3) in Aml group to 27 x 10(3) +/- 3 x 10(3) in FC group, p<0.05). A possible protective effect of amlodipine against the loss of glomeruli in SHR is a major additional action of amlodipine in the treatment of hypertension mainly when the renal lesion already exists.  相似文献   

12.
The importance of heart rate for left ventricular remodeling and prognosis after myocardial infarction is not known. We examined the contribution of heart rate reduction by zatebradine, a direct sinus node inhibitor without negative inotropic effects on left ventricular function and dilatation, on mortality, energy metabolism, and neurohormonal changes in rats with experimental myocardial infarction (MI). Thirty minutes after left coronary artery ligation or sham operation, the rats were randomized to receive either placebo or zatebradine (100 mg x kg(-1) x day(-1) per gavage) continued for 8 wk. Mortality during 8 wk was 33.3% in the placebo and 23.0% in the zatebradine group (P < 0.05); MI size was 36 +/- 2% and 30 +/- 1% (means +/- SE, P < 0.05), respectively. Zatebradine improved stroke volume index in all treated rats but increased left ventricular volume in rats with small MI (2.43 +/- 0.10 vs. 1.81 +/- 0.10 ml/kg, P < 0.05) but not in rats with large MI (2.34 +/- 0.09 vs. 2.35 +/- 0.11 ml/kg, not significant). Zatebradine reduced left and right ventricular norepinephrine and increased left and right ventricular 3,4-dihydroxyphenyl ethylene glycol-to-norepinephrine ratio suggesting aggravation of cardiac sympathetic activation by zatebradine after MI. Creatine kinase and lactate dehydrogenase isoenzymes in rats with MI remained unchanged by zatebradine. Lowering heart rate per se reduces mortality and MI size in this model but induces adverse effects on left ventricular remodeling in rats with small MI.  相似文献   

13.
A model utilizing 25 degree head-down tilt (HDT) and incorporated with chronic catheterization and renal micropuncture techniques in rats was employed to study alterations in renal function induced by HDT. Renal function and extracellular volume measurements were performed after 24 h, 4 days, and 7 days of HDT in conscious rats and compared with their own control measurements and to nontilted but similarly restrained rats. After 24 h HDT, glomerular filtration rate (GFR) increased 19 +/- 8% and renal plasma flow (RPF) increased 18 +/- 8% with increases in urine flow rate, Na+, and K+ excretion in conscious rats. These increases after 24 h were associated with an increase in extracellular volume of 16 +/- 3% (P less than 0.01). In the nontilted controls, there was a decrease in extracellular volume after 24 h of suspension. After 7 days of HDT, GFR was decreased by 7 +/- 1% (P less than 0.01), but RPF and extracellular fluid volume were not different from control values. However, RPF and GFR increased in the nontilted rats after 7 days. After 7 days of HDT renal micropuncture studies demonstrated that single-nephron filtration rate was also decreased from 43 +/- 2 to 31 +/- 3 nl/min (P less than 0.05) due solely to reductions in the glomerular ultrafiltration coefficient (0.11 +/- 0.01 to 0.07 +/- 0.01 nl.s-1 X mmHg-1, P less than 0.05). There was a dissociation between GFR and water and Na+ excretion at days 4 and 7 of HDT not observed in the nontilt restraint controls.  相似文献   

14.
To investigate the faster rate of renal disease progression in men compared with women, we addressed the following questions in the renal wrap (RW) model of hypertension: 1) Do sex differences exist in RW-induced renal injury, which are independent of sex differences in blood pressure? 2) Do sex differences in nitric oxide (NO) production exist in RW hypertension? Male (M) and female (F) rats underwent sham-operated (M-Sham, n = 7; F-Sham, n = 10) or RW (M-RW, n = 13; F-RW, n = 14) surgery for 9 wk. Markers of renal injury, including the glomerulosclerosis index (F-RW, 0.70 +/- 0.1 vs. M-RW, 2.2 +/- 0.6; P < 0.05), mean glomerular volume (F-RW, 1.05 +/- 0.050 x 10(6) vs. M-RW, 1.78 +/- 0.15 x 10(6) microm(3); P < 0.001), and proteinuria (F-RW, 68.7 +/- 15 vs. M-RW, 124 +/- 7.7 mg/day; P < 0.001) were greater in RW males compared with RW females. Endothelial NO synthase protein expression was elevated in the renal cortex (3.2-fold) and medulla (2.2-fold) 9 wk after RW in males, whereas no differences were observed in females. Neuronal NO synthase protein expression was unchanged in the renal cortex in males and in both the renal cortex and medulla in females, whereas in the male medulla, neuronal NOS was decreased by 57%. These data suggest the degree of renal injury is greater in male compared with female rats in RW hypertension despite similar degrees of hypertension and renal function and may involve sex differences in renal NO metabolism.  相似文献   

15.
In humans, multiparity (repeated pregnancy) is associated with increased risk of cardiovascular disease. In rats, multiparity increases the pressor response to phenylephrine and to acute stress, due in part to changes in tone of the splanchnic arterial vasculature. Given that the venous system also changes during pregnancy, we studied the effects of multiparity on venous tone and compliance. Cardiovascular responses to volume loading (2 ml/100 g body wt), and mean circulatory filling pressure (MCFP, an index of venomotor tone) were measured in conscious, repeatedly bred (RB), and age-matched virgin rats. In addition, passive compliance and venous reactivity of isolated mesenteric veins were measured by pressure myography. There was a greater increase in mean arterial pressure after volume loading in RB rats (+7.2 +/- 2.5 mmHg, n = 8) than virgin rats (-1.4 +/- 1.7 mmHg, n = 7) (P < 0.05). The increase in MCFP in response to norepinephrine (NE) was also greater in RB rats [half maximal effective dose (ED(50)) 3.1 +/- 0.5 nmol.kg(-1).min(-1), n = 6] than virgins (ED(50): 12.1 +/- 2.7 nmol.kg(-1).min(-1), n = 6) (P < 0.05). Pressure-induced changes in passive diameter were lower in isolated mesenteric veins from RB rats (29.3 +/- 1.8 microm/mmHg, n = 6) than from virgins (36.9 +/- 1.3 microm/mmHg, n = 6) (P < 0.05). Venous reactivity to NE in isolated veins was also greater in RB rats (EC(50): 2.68 +/- 0.37x10(-8) M, n = 5) than virgins (EC(50): 4.67 +/- 0.93 x 10(-8) M, n = 8). We conclude that repeated pregnancy induces a long-term reduction in splanchnic venous compliance and augments splanchnic venous reactivity and sympathetic tonic control of total body venous tone. This compromises the ability of the capacitance (venous) system to accommodate volume overloads and to buffer changes in cardiac preload.  相似文献   

16.
In obesity-related hypertension, activation of the renin-angiotensin system (RAS) has been reported despite marked fluid volume expansion. Adipose tissue expresses components of the RAS and is markedly expanded in obesity. This study evaluated changes in components of the adipose and systemic RAS in diet-induced obese hypertensive rats. RAS was quantified in adipose tissue and compared with primary sources for the circulating RAS. Male Sprague-Dawley rats were fed either a low-fat (LF; 11% kcal as fat) or moderately high-fat (32% kcal as fat) diet for 11 wk. After 8 wk, rats fed the moderately high-fat diet segregated into obesity-prone (OP) and obesity-resistant (OR) groups based on their body weight gain (body weight: OR, 566 +/- 10; OP, 702 +/- 20 g; P < 0.05). Mean arterial blood pressure was increased in OP rats (LF: 97 +/- 2; OR: 97 +/- 2; OP: 105 +/- 1 mmHg; P < 0.05). Quantification of mRNA expression by real-time PCR demonstrated a selective increase (2-fold) in angiotensinogen gene expression in retroperitoneal adipose tissue from OP vs. OR and LF rats. Similarly, plasma angiotensinogen concentration was increased in OP rats (LF: 390 +/- 48; OR: 355 +/- 24; OP: 530 +/- 22 ng/ml; P < 0.05). In contrast, other components of the RAS were not altered in OP rats. Marked increases in the plasma concentrations of angiotensin peptides were observed in OP rats (angiotensin II: LF: 95 +/- 31; OR: 59 +/- 20; OP: 295 +/- 118 pg/ml; P < 0.05). These results demonstrate increased activity of the adipose and systemic RAS in obesity-related hypertension.  相似文献   

17.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

18.
S-allylcysteine (SAC) is an organosulfur-containing compound derived from garlic. Studies have shown that garlic is beneficial in the treatment of cardiovascular diseases. This study aims to elucidate if SAC is responsible for this cardioprotection using acute myocardial infarction (AMI) rat models. In addition, we hypothesized that SAC may mediate cardioprotection via a hydrogen sulfide (H(2)S)-related pathway. Rats were pretreated with saline, SAC (50 mg x kg(-1) x day(-1)), SAC + propagylglycine (PAG; 50 mg + 10 mg x kg(-1) x day(-1)) or PAG (10 mg x kg(-1) x day(-1)) for 7 days before AMI induction and killed 48 h after. Our results showed that SAC significantly lowered mortality (12.5% vs. 33.3%, P < 0.05) and reduced infarct size. SAC + PAG- and PAG-treated rats had larger infarct sizes than controls (60.9 +/- 0.01 and 62.0 +/- 0.03%, respectively, vs. 50.0 +/- 0.03%; P < 0.05). Pretreatment with SAC did not affect BP, but BP was significantly elevated in SAC + PAG and PAG-treated groups (P < 0.05). In addition, plasma H(2)S levels and left ventricular cystathionine-gamma-lyase (CSE) activities were analyzed to investigate the involvement of H(2)S. CSE is the enzyme responsible for H(2)S production in the heart. SAC increased left ventricular CSE activity in AMI rats (2.75 +/- 0.34 vs. 1.23 +/- 0.16 micromol x g protein(-1) x h(-1); P < 0.01). SAC + PAG-treated rats had significantly lower CSE activity compared with the SAC-treated group (1.22 +/- 0.27 vs. 2.75 +/- 0.34 micromol x g protein(-1) x h(-1); P < 0.05). Similarly, SAC-treated rats had higher plasma H(2)S concentration compared with controls and the SAC + PAG-treated group. Protein expression studies revealed that SAC upregulated CSE expression (1.1-fold of control; P < 0.05), whereas SAC + PAG and PAG downregulated its expression (0.88-fold of control in both groups; P < 0.005). In conclusion, our study provides novel evidence that SAC is protective in myocardial infarction via an H(2)S-related pathway.  相似文献   

19.
The effects of prenatal protein restriction on adult renal and cardiovascular function have been studied in considerable detail. However, little is known about the effects of life-long protein restriction, a common condition in the developing world. Therefore, we determined in rats the effects of combined pre- and postnatal protein restriction on adult arterial pressure and renal function and responses to increased dietary sodium. Nephron number was also determined. Male Sprague-Dawley rats were born to mothers fed a low [8% (wt/wt), LP] or normal [20% (wt/wt), NP] isocaloric protein diet throughout pregnancy and maintained on these diets after birth. At postnatal day 135, nephron number, mean arterial pressure (MAP), and renal function were determined. A high-NaCl [8.0% (wt/wt), high-salt] diet was fed to a subset of rats from weaning. MAP was less in LP than in NP rats (120 +/- 2 vs. 128 +/- 2 mmHg, P < 0.05) and was not significantly altered by increased salt intake. Nephron number was 31% less in LP than in NP rats (P < 0.001). The volume of individual glomeruli was also less in LP than in NP rats, as were calculated effective renal plasma flow and glomerular filtration rate. Glomerular filtration rate, but not effective renal plasma flow, appeared to be increased by high salt intake, particularly in LP rats. In conclusion, protein restriction induced a severe nephron deficit, but MAP was lower, rather than higher, in protein-restricted than in control rats in adulthood. These findings indicate that the postnatal environment plays a key role in determining the outcomes of developmental programming.  相似文献   

20.
This study was designed to test the hypothesis that changes in subcutaneous PO2 (PscO2) during progressive hemodilution will reliably predict a "critical point" at which tissue O2 consumption (VO2) becomes dependent on O2 delivery (QO2). Twelve pentobarbital-anesthetized male Sprague-Dawley rats (315-375 g) underwent stepwise exchange of plasma for blood (1.5 ml of plasma for each 1 ml of blood lost). The initial exchange was equal to 25% of the estimated circulatory blood volume, and each subsequent exchange was equal to 10% of the estimated circulatory blood volume. After nine exchanges, the hematocrit (Hct) fell from 42 +/- 1 to 6 +/- 1%. Cardiac output and O2 extraction rose significantly. PscO2 became significantly reduced (P < 0.05) after exchange of 45% of the blood volume (Hct = 16 +/- 1%). VO2 became delivery dependent when QO2 fell below 21 ml x min(-1) x kg body wt(-1) (mean Hct = 13 +/- 1%). Eight control rats undergoing 1:1 blood-blood exchange showed no change in PscO2, pH, HCO3(-), or hemodynamics. Measurement of PscO2 may be a useful guide to monitor the adequacy of QO2 during hemodilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号