首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight procarcinogens including three nitrosamines, three polycyclic hydrocarbons, and two aromatic amines were tested for mutagenic potential at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells co-cultivated with viable hamster hepatocytes. All eight chemicals produced substantial mutagenic activity as indicated by increased trifluorothymidine resistance in L5178Y cells treated in the presence of hepatocytes. Mutagenic responses to benzo[a]pyrene, 3-methyl-cholanthrene, N-nitrosodiethylamine, and N-nitrosodipropylamine first increased, then plateaued within the range of mutagen concentrations tested, while consistent dose-dependent increases in mutant frequencies were observed following 2-aminoanthracene, 2-aminofluorene, or N-nitrosodimethylamine treatments. The relatively flat portions of the mutant frequency curves for benzo[a]pyrene and 3-methylcholanthrene coincided with maximum chemical solubility as obvious from visible or microscopically detectable precipitate. These hamster cells readily facilitated the metabolism of 1,2-benzanthracene to a detectable mutagen and were especially competent in the activation of the two aromatic amines. Thus, cultured hamster hepatocytes can activate a variety of chemical carcinogens including polycyclic hydrocarbons to mutagens in a whole cell-mediated in vitro assay using L5178Y/TK+/? cells as the target organism.  相似文献   

2.
The activity of thymidine kinase (TK) was studied in series of somatic cell hybrids between the mouse cell line 3T3-4E (TK-) and Chinese hamster cells M-15-1 (HGPRT-). Four groups of hybrid lines with different ratio of parental chromosome sets have been investigated: 1) three lines containing one hamster and one mouse chromosome set (1 hs+1 ms); 2) one line with 2 hs+1 ms; 3) one line containing 3 hs+1 ms and 4) one line containing 1 hs+2 ms. Mixtures of extracts from the parental cells were shown to possess the expected TK activity. The calculation of the activity per cell revealed that the 1 hs+1 ms and 2 hs+1 ms hybrid lines possessed about 50% of the initial hamster cell TK activity. The decreased TK activity in these hybrids might be due either to a loss of hamster chromosomes or to some inhibitory effect of mouse genome in cells with the studied ratio of parental sets. The enzyme activity in the 3 hs+1 ms hybrid was as expected, about three times greater than that of hamster cells.  相似文献   

3.
M L Kuo  J K Lin 《Mutation research》1989,212(2):231-239
The induction of DNA single-strand breaks in C3H10T1/2 mouse fibroblasts and Chinese hamster ovary (CHO) cells by N-nitroso-N-2-fluorenylacetamide (N-NO-2-FAA) was demonstrated by the alkaline elution technique. Without metabolic activating system (i.e., rat liver S9 fraction), N-NO-2-FAA exhibits more direct and strong damaging effects on DNA than its parent compound, 2-FAA, at equal concentration in both cell lines. To compare the DNA-damaging potency of N-NO-2-FAA with other well-known carcinogens, such as benzo[a]pyrene, 2-nitrofluorene, and N-methyl-N'-nitrosoguanidine (MNNG), the order of potency is as follows: MNNG (5 microM) greater than N-NO-2-FAA (150 microM) greater than benzo[a]pyrene (20 microM) at equitoxic concentrations, LD37, in the same cell system. Another parallel experiment indicated that N-NO-2-FAA could disrupt the superhelicity of circular plasmid DNA (pBR 322) at a dose range of 0.1-50 mM; however, a complete conversion to form III linear DNA was found at the highest concentration (50 mM). After treatment with various concentrations of N-NO-2-FAA, ouabain resistance (ouar) was induced in C3H10T1/2 cells, while both ouar and 6-thioguanine resistance (6-TGr) were induced in CHO cells. The mutation frequency in the Na+/K+-ATPase locus in CHO cells (1.5 X 10(-6) mutants/microM) is higher than that in C3H10T1/2 cells (1.0 X 10(-6) mutants/microM). The maximal mutation frequency at the Na+/K+-ATPase gene locus was attained with 30 min of exposure in C3H10T1/2 cells, whereas the mutation frequency in CHO cells continued to increase up to 80 min of treatment. Similarly, the maximal mutation frequency at the HPRT locus also continued to increase up to 80 min of treatment. Finally, a linear plot of alkali-labile lesions versus 6-TGr mutations was obtained; but the same relationship was not observed in the case of ouar mutation.  相似文献   

4.
The use of rat-liver S9 in genotoxicity tests may not reflect true metabolism by whole cells, particularly cells of target organs. We have tested mucosal cells of the mouse small intestine for the capacity to mediate activation/inactivation of chemical carcinogens. Mucosal cells were isolated by pronase digestion. Three million cells were co-cultured with Chinese hamster ovary fibroblasts during a 3-h exposure to chemical clastogens. In the presence of the mucosal cells, aflatoxin B1 (100 microM) was activated to produce chromosome aberrations in 30% of Chinese hamster ovary cell metaphases. 4-Nitroquinoline 1-oxide was deactivated by intestinal cells, while benzo[a]pyrene and dimethylbenz[a]anthracene were not activated by the cells. The clastogenicity of the phenolic compounds caffeic acid (0.28 mg/ml) and clorogenic acid (0.25 mg/ml) was eliminated by the mouse intestinal preparation. The pyrrolizidine alkaloid monocrotaline was activated by intestinal cells. The results suggest the presence of specific activation and deactivation enzymes in the intestinal mucosa. The intestine cell-mediated chromosome aberration test could provide a means to measure tissue-specific activation and deactivation capabilities.  相似文献   

5.
The mouse lymphoma assay (MLA) and Chinese hamster ovary (CHO) cell assay are sensitive indicators of mutagenicity. The CHO assay has been modified technically to permit treatment in suspension and soft agar cloning comparable to the MLA. This methodology eliminates the risk of metabolic cooperation and the trauma of trypsinization. In addition, a larger population of cells can be treated and cloned for mutant selection. In order to compare the effectiveness of the test systems, 10 chemicals were evaluated for the induction of forward mutations in the CHO and MLA. Several of these chemicals have been reported as clastogenic; therefore, abbreviated colony sizing was performed to gauge the extent of genetic damage to the MLA cells. Both test systems detected benzo[a]pyrene, mitomycin C, acridine orange, and proflavin, and, with the exception of proflavin, more large colonies were present than small colonies. The suspect clastogen, phenytoin, was not mutagenic in the MLA and produced inconclusive results in the CHO. Ethidium bromide, a clastogen and a bacterial mutagen, was not mutagenic in either the MLA or CHO. Four compounds (p-aminophenol, benzoin, methoxychlor, and pyrene) were positive in the MLA, generally inducing a large number of small colonies, while demonstrating no mutagenic activity in the CHO assay. They have also been shown to be generally nongenotoxic in other test systems. Overall, the modified CHO assay did not appear to be better than the MLA for the detection of mutagenic agents. However, the MLA does appear to have lower specificity.Abbreviations AO acridine orange - BAP benzo[a]pyrene - BZN benzoin - CHO Chinese hamster ovary cell assay - DPH diphenylhydantoin - EB ethidium bromide - EMS ethylmethanesulfonate - 3MC 3-methylcholanthrene - MLA mouse lymphoma asay - MMC mitomycin C - MXC methoxychlor - PAP p-aminophenol - PRO proflavin - PYR pyrene  相似文献   

6.
SCE induction in Chinese hamster Don (lung) cells was compared with that in CHO (ovary) cells exposed under identical conditions to 14 known mutagens. Test protocols used for comparison were selected following a study of Don and CHO cell responses to aflatoxin B1 and benzo[a]pyrene. In the absence of added metabolizing enzymes 9-aminoacridine, 4-nitroquinoline 1-oxide, N-methyl-N-nitrosourea, dimethylcarbamoyl chloride, beta-propiolactone, daunomycin, aflatoxin B1 and 2-aminoanthracene were directly active in both cell lines; every substance positive in CHO cells was also positive in Don cells. However, the latter detected cyclophosphamide, hydrazine sulphate, benz[c]acridine, 3-methylcholanthrene and benzo[a]pyrene without addition of S9. CHO cells did not respond equivalently to these mutagens, either in the presence or absence of S9. Other differences between the cell lines depended on chemical exposure time, S9 pre-incubation or co-incubation conditions. For example, the ability of CHO cells to detect SCEs due to 2-aminoanthracene was acutely dependent on exposure time. In addition, Don cells exhibited lower background SCE values which were less variable than those of CHO cells under the same culture conditions. Although incapable of detecting 4-dimethylaminoazobenzene (butter yellow) and not as sensitive to cyclophosphamide as certain cell lines of liver origin, the pseudodiploid Don cell line possesses other desirable characteristics required for in vitro SCE assays, particularly with regard to intrinsic metabolic activation of polycyclic aromatic hydrocarbons and related substances.  相似文献   

7.
The technique of alkaline sucrose gradient centrifugation was used to study newly synthesized DNA in control and ultraviolet light-irradiated mouse L, human HeLa, and Chinese hamster ovary cells. Nascent DNA molecular weight distributions did not appear to differ among the three cell lines for unirradiated cells. However, at short times after ultraviolet light irradiation, human HeLa cells appeared to synthesize more low molecular weight DNA than either mouse L or Chinese hamster ovary cells. Since this difference was not related to differences in either the rate of DNA synthesis or amount of ultraviolet damage in the irradiated cells it appeared to be a phenotypic characteristic of the cell lines tested. A parallel was noted for these three cell lines between an increase in the synthesis of low molecular weight DNA, detected on alkaline sucrose gradients, and cell killing as measured by the ability of irradiated cells to form colonies.  相似文献   

8.
We have determined the mutational specificity of S9-activated benzo[a]pyrene (B[a]P) at the endogenous aprt locus in a hemizygous Chinese hamster ovary cell line. The aprt gene of recovered mutants was amplified using the polymerase chain reaction (PCR) and directly sequenced. This spectrum was then compared to mutations recovered following treatment with the B[a]P metabolite, benzo[a]pyrene diol-epoxide (BPDE). No significant difference between the two spectra in the types of mutations produced, or their distribution was observed. This observation supports the hypothesis that BPDE is the reactive metabolite of B[a]P, responsible for the significant biological effects caused by this ubiquitous polycyclic aromatic hydrocarbon. The major mutation recovered was the G:C-->T:A transversion, and mutations were primarily localized within runs of guanines. We also confirmed our previous finding that mutation by B[a]P is non-random, targeting events in runs of guanines flanked by adenine residues. This same target hotspot region is found in codon 61 of the human c-Ha-ras1 proto-oncogene. This may help explain the selective activation of this codon by BPDE.  相似文献   

9.
Studies were carried out on the incidence of sister-chromatid exchanges induced in Chinese hamster ovary cells by in vitro treatment with the polycyclic aromatic hydrocarbons 7-methylbenz[a]anthracene and benzo[a]pyrene and with related K-region and non-K-region dihydrodiols. Appreciable increases in the incidence of sister-chromatid exchanges were apparent in cells treated with non-K-region dihydrodiols: the most active compounds were 3,4-dihydro-3,4-dihydroxy-7-methylbenz[a]anthracene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene and the effects were dose-dependent. The parent hydrocarbons and the related K-region dihydrodiols induced some sister-chromatid exchanges but they were considerably less active than these two non-K-region diols. The results suggest that this system may usefully be applied to studies aimed at determining which dihydrodiols are important in the metabolic activation of the carcinogenic polycyclic hydrocarbons. These and other results also infer that Chinese hamster ovary cells possess some intrinsic ability to metabolize such compounds in the absence of exogenous activation systems.  相似文献   

10.
We have isolated three mammalian cell lines which are resistant to compactin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The drug resistance in all three cell lines is due to an increase of HMG-CoA reductase activity. Two of the three cell lines overaccumulate HMG-CoA reductase messenger RNA when grown in the presence of compactin. DNA hybridization experiments indicate that both a baby hamster kidney-derived compactin-resistant cell line, C100, and a cell line derived from mouse 3T6 cells, 3T6-40, exhibit amplifications of the HMG-CoA reductase gene. A third compactin-resistant cell line derived from Chinese hamster ovary cells, ML100, does not exhibit an amplification of the HMG-CoA reductase gene, nor does it show an elevated level of HMG-CoA reductase mRNA, comparable to that seen in the other cell lines.  相似文献   

11.
C3H/10T1/2 clone 8 (10T1/2) cells possess aryl hydrocarbon hydroxylase (AHH) activity capable of metabolizing polycyclic aromatic hydrocarbons to ultimate carcinogenic forms. AHH activity in 10T1/2 cells was measured before and after culturing in the presence of benzo[a]pyrene (B[a]P), and compared to the AHH activity found in carcinogen-transformed 10T1/2 cell lines treated similarly. The cell lines were also examined for B[a]P-DNA adduct formation, using the 32P-postlabelling technique. Treatment of parental 10T1/2 cells with B[a]P was found to significantly increase AHH activity and produce substantial numbers of DNA adducts. In addition to a major B[a]P-DNA adduct, 5-6 minor DNA adducts were also detected. Relative to parental 10T1/2 cells, an aflatoxin B1-transformed 10T1/2 cell line (7SA) was found to have significantly depressed AHH activity. In addition, after treatment with B[a]P, 7SA cells had only 8% of the B[a]P-DNA adduct levels found in 10T1/2 cells. This system may provide an in vitro model for investigating mechanisms responsible for the depression of cytochrome P-450 activities by chemical carcinogens.  相似文献   

12.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

13.
Stable mutants (Dipr), highly resistant to diphtheria toxin have been selected from a sensitive human lymphoblast line. A second human lymphoblast line, HH-4 (and its derivative TK6-1) were found to be highly resistant to diphtheria toxin without any previous selection, suggesting the presence of the Dipr allele in the human population. The resistance of protein synthesis in extracts of mutant cells to diphtheria toxin indicates that the genetic lesion in the resistant lines examined involved an alteration in the protein synthesis. In comparison to sensitive cells, the mutant cell extracts contained reduced (30–40%) levels of ADP-ribosylatable elongation factor-2 activity suggesting that the lesion presumably affects elongation factor-2 in such cells. The biochemical phenotype of these mutants appears similar to that of the DiprIIb class of mutants of Chinese hamster cells (4,6) which behave codominantly in hybrids.  相似文献   

14.
The dioxin-inducible P-450 gene family in the C57BL/6N mouse comprises two genes, P1-450 and P3-450. Restriction endonuclease-digested genomic DNA was probed with P1-450 and P3-450 full-length cDNA clones in an attempt to find species-specific fragment length differences between mouse and hamster cell lines and any restriction fragment length polymorphism among four inbred mouse strains. With this Southern blot hybridization technique, PstI fragments were used to distinguish between the mouse and hamster P1-450/P3-450 genes, and PvuII fragments were used to distinguish P3-450 differences between the AKR/J and C57L/J inbred strains. Analysis of nineteen mouse X hamster somatic cell hybrid lines and sixteen AKXL (AKR/J X C57L/J) recombinant inbred lines showed that the P1-450/P3-450 genes are located near the Mpi-1 locus, between the Thy-1 and Pk-3 loci, in the middle portion of mouse chromosome 9.  相似文献   

15.
Chinese hamster ovary (CHO) cells are a prevalent tool in biological research and are among the most widely used host cell lines for production of recombinant therapeutic proteins. While research in other organisms has been revolutionized through the development of DNA sequence-based tools, the lack of comparable genomic resources for the Chinese hamster has impeded similar work in CHO cell lines. A comparative genomics approach, based upon the completely sequenced mouse genome, can facilitate genomic work in this important organism. Using chromosome synteny to define regions of conserved linkage between Chinese hamster and mouse chromosomes, a working scaffold for the Chinese hamster genome has been developed. Mapping CHO and Chinese hamster sequences to the mouse genome creates direct access to relevant information in public databases. Additionally, mapping gene expression data onto a chromosome scaffold affords the ability to interpret information in a genomic context, potentially revealing important structural and regulatory features in the Chinese hamster genome. Further development of this genomic scaffold will provide opportunities to use biomolecular tools for research in CHO cell lines today and will be an asset to future efforts to sequence the Chinese hamster genome.  相似文献   

16.
Purified DNA from three different types of mammalian cells was precipitated with calcium phosphate and added to mouse L cells deficient in thymidine kinase (TK). Donor DNA was prepared from three cell lines: (a) mouse cells transfected with UV-inactivated herpes simplex virus (HSV) type 1, or a purified fragment of HSV carrying the TK gene (b) human HeLa cells, and (c( CHO, a cell line derived from Chinese hamster ovaries. Several hypoxanthine-aminopterin-thymidine resistant colonies were isolated from each experiment. The origin of the TK that is expressed in these cells was studied by polyacrylamide gel electrohporesis, isoelectric focusing, or heat stability. The TK in all instances was of the donor origin. To determine the extent of gene transfer we have assayed the CHO and HeLa DNA transfectants for galactokinase (GALK), a marker closely linked to TK, and 25 other isozymes representing a large number of different chromosomes. No cotransfer of GALK was observed, indicating that the size of the transferred DNA segment is limited. We observed that, in one instance, esterase-D, an unlinked marker of Chinese hamster origin, was transferred along with TK. These experiments indicate that nonselected markers can be transferred by this method, although at a low efficiency.  相似文献   

17.
Reactive oxygen species are believed to be involved in radiation lethality. Glutathione peroxidase is an intracellular enzyme with antioxidant functions. To determine whether increasing the cellular antioxidant capacity can confer radiation resistance, the effect of overexpression of glutathione peroxidase on radiosensitivity was determined in two different cell types. An expression construct including the bovine cytosolic glutathione peroxidase cDNA was used to overexpress this enzyme in cells of the human lymphoblast cell line Sup-T1 as well as the Chinese hamster ovary cell line AA8. Supplementation of the culture media with 30 nM sodium selenite was included to obtain optimal glutathione peroxidase activity. Northern blot analysis confirmed the presence of the construct mRNA, and a standard coupled spectrophotometric assay demonstrated significantly increased glutathione peroxidase activity in the transfected cell lines. An approximately 8-fold increase was found in the Sup-T1 cells, and an approximately 30-fold increase was obtained in the Chinese hamster ovary AA8 cells. Clonogenic survival was assayed in the overexpressing cells and compared to that in control cells transfected with vector alone. Despite significantly increased glutathione peroxidase activity, no observable radioprotection was conferred in either of the two cell lines studied, indicating that increased glutathione peroxidase activity is insufficient to confer radioresistance in the two cell types examined. These data are discussed in the context of using antioxidants as adjuncts to clinical radiotherapy.  相似文献   

18.
DNA-mediated gene transfer (DMGT) was performed in DNA repair-proficient and UV-hypersensitive, repair-deficient Chinese hamster ovary (CHO) cell lines using the UV-irradiated thymidine kinase gene from herpes simplex virus (HSV-TK). Transformation frequencies in repair-deficient CHO cell lines declined relative to repair-proficient cells with increasing UV damage in transfected DNA; approximately 3-fold higher UV fluence was required to inactivate 50% of irradiated HSV-TK plasmid molecules in repair-proficient cells. In cotransfection experiments performed with pairs of HSV-TK plasmids containing linker insertion mutations in TK coding sequences, moderate UV damage in plasmid DNA enhanced the yield of TK+ transformants resulting from homologous recombination between HSV-TK sequences up to 4-fold. These results suggest that UV damage in DNA can stimulate transformation of mammalian cells dependent on intermolecular DNA homology.  相似文献   

19.
Alkaline sucrose gradient sedimentation analysis was used to detect DNA lesions induced by benzo[a]pyrene B(a)P in Chinese hamster ovary cells. The number of lesions detected immediately following treatment with 10(-4) M B(a)P was related directly to the duration of treatment. When treated cells were incubated in a B(a)P-free medium, the majority of lesions disappeared rapidly and could no longer be detected 15 min following treatment. These data indicate that a population of B(a)P-induced DNA lesions may be removed by a rapid DNA-repair process. The transient nature of such lesions should be considered when assays for DNA damage or repair are designed and interpreted.  相似文献   

20.
Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated.REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号