首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington’s disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2–MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR expansions is a threshold effect, a narrow range of repeat units (∼30–40 in humans) at which mutation frequency rises dramatically and disease can initiate. The goal of this study was to identify factors that promote expansion of threshold-length CTG•CAG repeats in a human astrocytic cell line. siRNA knockdown of the MutSβ subunits MSH2 or MSH3 impeded expansions of threshold-length repeats, while knockdown of the MutSα subunit MSH6 had no effect. Chromatin immunoprecipitation experiments indicated that MutSβ, but not MutSα, was enriched at the TNR. These findings imply a direct role for MutSβ in promoting expansion of threshold-length CTG•CAG tracts. We identified the class II deacetylase HDAC5 as a novel promoting factor for expansions, joining the class I deacetylase HDAC3 that was previously identified. Double knockdowns were consistent with the possibility that MutSβ, HDAC3 and HDAC5 act through a common pathway to promote expansions of threshold-length TNRs.  相似文献   

5.
6.
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.  相似文献   

7.
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.  相似文献   

8.
9.
10.
11.
12.
The size of the CAG tract at the Huntington's disease (HD) locus upon transmission depends on the gender of the parent. However, the basis for the parent-of-origin effect is unknown. To test whether expansion and contraction in HD are "imprinted" in the germ cells, we isolated the X- and Y-bearing sperm of HD transgenic mice. Here we show that CAG repeat distributions in the X- and Y-bearing spermatozoa of founding fathers do not differ. These data show that gender-dependent changes in CAG repeat length arise in the embryo.  相似文献   

13.
14.
Several human neurodegenerative disorders are caused by expansion of CAG repeats that occurs during meiosis or gametogenesis. We anticipated that the CAG repeats cloned in a plasmid of Saccharomyces cerevisiae might undergo a change in the number of repeats during meiosis and sporulation. To test this possibility, we devised a new method to change in vitro the number of CAG repeats and constructed plasmids carrying (CAG)39, (CAG)65 or (CAG)123 from a plasmid carrying (CAG)18. We monitored the number of colonies showing an altered length of the repeat tracts during mitosis and meiotic growth. Contraction of long CAG repeat was found to occur frequently, whereas a few cases of expansion were observed. The contraction was equally enhanced in both orientations when the host cells grew through meiosis. Thus, our results suggest that long CAG repeats are destabilized during meiosis or gametogenesis in S. cerevisiae.  相似文献   

15.
CAG repeats form stable hairpin structures, which are believed to be responsible for CAG repeat expansions associated with certain human neurological diseases. Human cells possess an accurate DNA hairpin repair system that prevents expansion of disease-associated CAG repeats. Based on transgenic animal studies, it is suggested that (CAG)n expansion is caused by abnormal binding of the MutSβ mismatch recognition protein to (CAG)n hairpins, leading to hijacking mismatch repair function during (CAG)n hairpin repair. We demonstrate here that MutSβ displays identical biochemical and biophysical activities (including ATP-provoked conformational change, ATPase, ATP binding, and ADP binding) when interacting with a (CAG)n hairpin and a mismatch. More importantly, our in vitro functional hairpin repair assays reveal that excess MutSβ does not inhibit (CAG)n hairpin repair in HeLa nuclear extracts. Evidence presented here provides a novel view as to whether or not MutSβ is involved in CAG repeat instability in humans.Expansion of trinucleotide repeats (TNRs)3 causes hereditary neurological disorders such as Huntington disease and myotonic dystrophy, whose clinical symptoms are directly linked to expansion of CAG and CTG repeats, respectively (13). The precise mechanisms by which TNR expansion occurs and the factors that promote it are not fully understood. It has been proposed that CAG and CTG repeats form thermostable hairpins that include A-A and T-T mispairs in the hairpin stem (4, 5). Therefore, cellular mechanisms that process DNA hairpin/loop structures and/or A-A or T-T mispairs may influence TNR stability.Recent studies have identified and characterized a DNA hairpin repair (HPR) system in human cells that promotes CAG/CTG repeat stability (6, 7). The mechanism of human HPR involves incision and removal of CAG/CTG repeat hairpins in a nick-directed and proliferating cell nuclear antigen-dependent manner, followed by DNA resynthesis using the continuous strand as a template (6). In addition to human HPR, the human mismatch repair (MMR) system is well known for its role in stabilizing simple repetitive sequences called microsatellites, which are prone to forming small loops or insertion/deletion (ID) mispairs. In human cells, MutSα (MSH2–MSH6) and MutSβ (MSH2–MSH3) both bind to 1–2-nt ID mispairs, but MutSβ has higher affinity for these small loops (8). Defects in MMR genes cause microsatellite instability and predisposition to cancer (9), demonstrating that MMR is essential for genetic stability in human cells. Surprisingly, genetic studies in mice suggest that MutSβ promotes (CAG)n expansion and TNR instability. These studies show that expansion of a heterologous (CAG)n tract occurs in wild type and MSH6−/− mice but that expansion of the (CAG)n tract is suppressed in MSH2−/− and MSH3−/− mice (10, 11). Recently, Owens et al. (11) reported that binding to a (CAG)n hairpin influences the protein conformation, nucleotide binding, and hydrolysis activities of MutSβ so that they are different from what has been reported for MutSα during mismatch recognition. It is therefore hypothesized that (CAG)n hairpins, through their ability to alter the biochemical properties of MutSβ, hijack the MMR process, leading to CAG repeat expansion instead of CAG hairpin removal (11). However, it is not clear why MMR, a major genome maintenance system, would promote TNR instability instead of TNR stability. We, therefore, have developed a novel functional assay and examined the validity of this hypothesis. Our results reveal that MutSβ displays normal biochemical activities when binding to CAG hairpins and does not inhibit (CAG)n hairpin repair. The observations presented here provide novel thoughts on whether or not or how MutSβ is involved in CAG repeat instability in human cells.  相似文献   

16.
Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats.  相似文献   

17.
18.
19.
A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functional expression of the reporter, leading to red colony color. Reporter constructs including (CAG)50 or (CTG)50 repeat sequences were integrated into the yeast genome, and the rate of red colony formation was measured. Both orientations yielded high rates of instability (4 x 10(-4) to 18 x 10(-4) per cell generation). Instability depended on repeat sequences, as a control harboring a randomized (C,A,G)50 sequence was at least 100-fold more stable. PCR analysis of the trinucleotide repeat region indicated an excellent correlation between change in color phenotype and reduction in length of the repeat tracts. No preferential product sizes were observed. Strains containing disruptions of the mismatch repair gene MSH2, MSH3, or PMS1 or the recombination gene RAD52 showed little or no difference in rates of instability or distributions of products, suggesting that neither mismatch repair nor recombination plays an important role in large contractions of trinucleotide repeats in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号