首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nap gene cluster encoding periplasmic nitrate reductase was identified from Pseudomonas sp. strain MT-1, a deep-sea denitrifier isolated from the Mariana Trench. The ORFs identified were highly homologous with those of Pseudomonas stutzeri, but the cluster included only four ORFs (napDABC), less than those in other organisms. For other bacteria, some additional small ORFs (such as napE, napF, napG, napH, and napK) are found in the nap gene cluster, although their physiological function is still unclear. The soluble fraction of MT-1 grown under denitrifying condition showed significant nitrate reductase activity. This observation suggests that the periplasmic nitrate reductase encoded by the gene cluster identified in this study is functional. The activity was highest when the organism was grown under denitrifying conditions, suggesting that the enzyme participates in dissimilatory nitrite reduction.  相似文献   

2.
3.
A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.  相似文献   

4.
5.
S Sau  C Y Lee 《Journal of bacteriology》1996,178(7):2118-2126
Eleven serotypes of capsular polysaccharide from Staphylococcus aureus have been reported. We have previously cloned a cluster of type 1 capsule (cap1) genes responsible for type 1 capsular polysaccharide biosynthesis in S. aureus M. To clone the type 8 capsule (cap8) genes, a plasmid library of type 8 strain Becker was screened with a labelled DNA fragment containing the cap1 genes under low-stringency conditions. One recombinant plasmid containing a 14-kb insert was chosen for further study and found to complement 14 of the 18 type 8 capsule-negative (Cap8-) mutants used in the study. Additional library screening, subcloning, and complementation experiments showed that all of the 18 Cap8- mutants were complemented by DNA fragments derived from a 20.5-kb contiguous region of the Becker chromosome. The mutants were mapped into six complementation groups, indicating that the cap8 genes are clustered. By Southern hybridization analyses under high-stringency conditions, we found that DNA fragments containing the cap8 gene cluster show extensive homology with all 17 strains tested, including type 1 strains. By further Southern analyses and cloning of the cap8-related homolog from strain M, we show that strain M carries an additional capsule gene cluster different from the cap1 gene cluster. In addition, by using DNA fragments containing different regions of the cap8 gene cluster as probes to hybridize DNA from different strains, we found that the central region of the cap8 gene cluster hybridizes only to DNAs from certain strains tested whereas the flanking regions hybridize to DNAs of all strains tested. Thus, the cap8 gene clusters and its closely related homologs are likely to have organizations similar to those of the encapsulation genes of other bacterial systems.  相似文献   

6.
Denitrification is the process by which nitrates are converted to nitrogen gas under the action of microor-ganism, and in a bioenergetics viewpoint, a kind of respiration of bacteria in anoxia condition. In such a process, nitrogen in oxidation state replaces oxygen as the terminal electron acceptor in cell membrane, gen-erates potential gradient with the action of a series of oxidoreductase, and finally converts nitrate into nitro-gen[1]. Denitrification is widely present in nature, and resea…  相似文献   

7.
8.
The nucleotide sequence of a 3.2 kb region following the hydrogenase structural operon (hupSLCDEF) in the H2-uptake gene cluster from Rhizobium leguminosarum by viciae strain 128C53 has been determined. Five closely linked genes encoding products of 16.3 (HupG), 30.5 (HupH), 8.0 (HupI), 18.4 (HupJ) and 38.7 (HupK) kDa were identified 166 bp downstream from hupF. Transposon insertions into hupG, hupH, hupJ and hupK suppress the H2-oxidizing capability of the wild-type strain. The amino acid sequence deduced from hupI contains two Cys-X-X-Cys motifs, characteristic of rubredoxins, separated by 29 amino acid residues showing strong sequence homology with other bacterial rubredoxins. The amino acid-derived sequence from hupG and hupH showed homology to products from genes hyaE and hyaF of the operon encoding hydrogenase 1 from Escherichia coli, and hupJ and hupK were related to open reading frames identified in Rhodobacter capsulatus and Azotobacter vinelandii hydrogenase gene clusters. An involvement of the hupGHIJK gene cluster in redox reactions related to hydrogenase synthesis or activity is predicted on the basis of the function as electron carrier attributed to rubredoxin.  相似文献   

9.
10.
11.
A cluster of genes encoding subunits of ATP synthase of Anabaena sp. strain PCC 7120 was cloned, and the nucleotide sequences of the genes were determined. This cluster, denoted atp1, consists of four F0 genes and three F1 genes encoding the subunits a (atpI), c (atpH), b' (atpG), b (atpF), delta (atpD), alpha (aptA), and gamma (atpC) in that order. Closely linked upstream of the ATP synthase subunit genes is an open reading frame denoted gene 1, which is equivalent to the uncI gene of Escherichia coli. The atp1 gene cluster is at least 10 kilobase pairs distant in the genome from apt2, a cluster of genes encoding the beta (atpB) and epsilon (atpE) subunits of the ATP synthase. This two-clustered ATP synthase gene arrangement is intermediate between those found in chloroplasts and E. coli. A unique feature of the Anabaena atp1 cluster is overlap between the coding regions for atpF and atpD. The atp1 cluster is transcribed as a single 7-kilobase polycistronic mRNA that initiates 140 base pairs upstream of gene 1. The deduced translation products for the Anabaena sp. strain PCC 7120 subunit genes are more similar to chloroplast ATP synthase subunits than to those of E. coli.  相似文献   

12.
13.
We identified the genes encoding the membrane-bound nitrate reductase (Nar) from the moderate halophile, Halomonas halodenitrificans, and examined the structure of the gene cluster. Screening of a H. halodenitrificans genomic DNA library in lambda EMBL3 phage by chromosome walking revealed that the region adjacent to the nor gene cluster encoding nitric oxide (NO) reductase contains three nitrate transporters: tandem narK2 and narK1.1 genes and a single narK1.2 gene encoded in opposite directions. NarK1.1 and NarK1.2 proteins, which have 12 putative membrane-spanning helices, were classified as type I NarK, whereas NarK2, which has 14 putative membrane-spanning helices, was classified as a type II NarK. NarK1.1 and NarK2 proteins were considered to be functionally and structurally linked in the cytoplasmic membrane. The systems regulating the expression of the tandem narK2K1.1 gene and the single narK1.2 gene were found to be different. Further, binding sites for NarL and Fnr-like proteins are present in the promoter region of the narK2 gene.  相似文献   

14.
We have isolated a cDNA for a putative transporter, named GmNRT1-3, in the NRT1 family from soybean. It was predicted to have a similar topological structure not only to both GmNRT1-1 and GmNRT1-2 reported previously, but also to other members of the family. Two other cDNAs isolated have parts of the sequence for putative NRT1 transporters, GmNRT1-4 and GmNRT1-5, suggesting that at least five NRT1 transporters occur in soybean. These GmNRT1 genes and the GmNRT2 gene, encoding a soybean NRT2 nitrate transporter, showed different expression patterns to each other under various nitrogen conditions. Specifically, GmNRT1-3 was constitutively expressed in both roots and leaves, while GmNRT1-2 was gradually expressed as the roots developed in the presence of ammonium as a nitrogen source, but not in the presence of both ammonium and nitrate. Based on these results, we discussed the possible regulation in the expression and role of these transporters in nitrate uptake.  相似文献   

15.
The cluster of genes encoding the botulinum progenitor toxin and the upstream region including p21 and p47 were divided into three different gene arrangements (class I–III). To determine the gene similarity of the type E neurotoxin (BoNT/E) complex to other types, the gene organization in the upstream region of the nontoxic-nonhemagglutinin gene (ntnh) was investigated in chromosomal DNA from Clostridium botulinum type E strain Iwanai and C. butyricum strain BL6340. The gene cluster of type E progenitor toxin (Iwanai and BL6340) was similar to those of type F and type A (from infant botulism in Japan), but not to those of types A, B, and C. Though genes for the hemagglutinin component and P21 were not discovered, genes encoding P47, NTNH, and BoNT were found in type E strain Iwanai and C. butyricum strain BL6340. However, the genes of ORF-X1 (435 bp) and ORF-X2 (partially sequenced) were present just upstream of that of P47. The orientation of these genes was in inverted direction to that of p47. The gene cluster of type E progenitor toxin (Iwanai and BL6340) is, therefore, a specific arrangement (class IV) among the genes encoding components of the BoNT complex.  相似文献   

16.
Wang Q  Li H  Post AF 《Journal of bacteriology》2000,182(6):1764-1767
A 4.0-kb DNA fragment of Trichodesmium sp. strain WH9601 contained gene sequences encoding the nitrate reduction enzymes, nirA and narB. A third gene positioned between nirA and narB encodes a putative membrane protein with similarity to the nitrate permeases of Bacillus subtilis (NasA) and Emericella nidulans (CrnA). The gene was shown to functionally complement a DeltanasA mutant of B. subtilis and was assigned the name napA (nitrate permease). NapA was involved in both nitrate and nitrite uptake by the complemented B. subtilis cells. napA is distinct from the nrt genes that encode the nitrate transporter of freshwater cyanobacteria.  相似文献   

17.
Ureaplasma urealyticum is a pathogenic ureolytic mollicute which colonizes the urogenital tracts of humans. A genetic polymorphism between the two biotypes of U. urealyticum at the level of the urease genes was found. The urease gene cluster from a biotype 1 representative of U. urealyticum (serotype I) was cloned and sequenced. Seven genes were found, with ureA, ureB, and ureC encoding the structural subunits and ureE, ureF, ureG, and a truncated ureI) gene encoding accessory proteins. Urease expression was not obtained when the plasmid containing these genes was incorporated into an opal suppressor strain of Escherichia coli, although this enzymatic activity was found in the same E. coli strain transformed with pC6b, a plasmid with previously cloned urease genes from the U. urealyticum T960 strain of biotype 2 (serotype 8). Although there are 12 TGA triplets encoding tryptophan within urease genes, the level of expression obtained was comparable to the levels reported for other bacterial genes expressed in E. coli. Nested deletion experiments allowed us to demonstrate that ureD is necessary for urease activity whereas another open reading frame located downstream is not. The promoter for ureA and possibly other urease genes was identified for both serotypes.  相似文献   

18.
19.
20.
Light acts both directly as a signal and indirectly through photosynthesis to regulate the expression of genes encoding nitrate reductase (NR). Here, we report the isolation and characterization of a novel chlorate-resistant mutant that is defective in the regulation of NR gene expression. The response of NR2, but not NR1 or the gene encoding nitrate reductase (NiR), to light signals was impaired in this Arabidopsis mutant, designated cr88. In addition to NR2, the light regulation of the genes encoding the chlorophyll a/b binding protein (CAB) and the small subunit of ribulose bisphosphate carboxylase (RBCS) was also impaired in this mutant. These results suggest that the pathway through which light regulates the expression of NR2, CAB, and RBCS genes is different from those that regulate the expression of NR1 and NiR. An examination of the deetiolation process under different light spectrum showed that cr88 is defective in red light-mediated deetiolation. Complementation tests with various long hypocotyl (hy) mutants indicated that CR88 identifies a new HY locus. The possible functions of CR88 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号