首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to upstream signals, proteins in the Wiskott-Aldrich Syndrome protein (WASP) family regulate actin nucleation via the Arp2/3 complex. Despite intensive study of the function of WASP family proteins in nucleation, it is not yet understood how their distinct structural organization contributes to actin-based motility. Herein, we analyzed the activities of WASP and Scar1 truncation derivatives by using a bead-based motility assay. The minimal region of WASP sufficient to direct movement was the C-terminal WCA fragment, whereas the corresponding region of Scar1 was insufficient. In addition, the proline-rich regions of WASP and Scar1 and the Ena/VASP homology 1 (EVH1) domain of WASP independently enhanced motility rates. The contributions of these regions to motility could not be accounted for by their direct effects on actin nucleation with the Arp2/3 complex, suggesting that they stimulate motility by recruiting additional factors. We have identified profilin as one such factor. WASP- and Scar1-coated bead motility rates were significantly reduced by depletion of profilin and VASP and could be more efficiently rescued by a combination of VASP and wild-type profilin than by VASP and a mutant profilin that cannot bind proline-rich sequences. Moreover, motility of WASP WCA beads was not affected by the depletion or addback of VASP and profilin. Our results suggest that recruitment of factors, including profilin, by the proline-rich regions of WASP and Scar1 and the EVH1 domain of WASP stimulates cellular actin-based motility.  相似文献   

2.
The facultative intracellular bacterium Burkholderia pseudomallei induces actin rearrangement within infected host cells leading to formation of actin tails and membrane protrusions. To investigate the underlying mechanism we analysed the contribution of cytoskeletal proteins to B. pseudomallei-induced actin tail assembly. By using green fluorescent protein (GFP)-fusion constructs, the recruitment of the Arp2/3 complex, vasodilator-stimulated phosphoprotein (VASP), Neural Wiskott-Aldrich syndrome protein (N-WASP), zyxin, vinculin, paxillin and alpha-actinin to the surface of B. pseudomallei and into corresponding actin tails was studied. In addition, antibodies against the same panel of proteins were used for immunolocalization. Whereas the Arp2/3 complex and alpha-actinin were incorporated into B. pseudomallei-induced actin tails, none of the other proteins were detected in these structures. The overexpression of an Arp2/3 binding fragment of the Scar1 protein, shown previously to block actin-based motility of Listeria, had no effect on B. pseudomallei tail formation. Infections of either N-WASP- or Ena/VASP-defective cells showed that these proteins are not essential for B. pseudomallei-induced actin polymerization. In conclusion, our results suggest that B. pseudomallei induces actin polymerization through a mechanism that differs from those evolved by Listeria, Shigella, Rickettsia or vaccinia virus.  相似文献   

3.
The Ena/vasodilator-stimulated phosphoprotein (VASP) protein family is implicated in the regulation of a number of actin-based cellular processes, including lamellipodial protrusion necessary for whole cell translocation. A growing body of evidence derived largely from in vitro biochemical experiments using purified proteins, cell-free extracts, and pathogen motility has begun to suggest various mechanistic roles for Ena/VASP proteins in the control of actin dynamics. Using complementation of phenotypes in Ena/VASP-deficient cells and overexpression in normal fibroblasts, we have assayed the function of a panel of mutants in one member of this family, Mena, by mutating highly conserved sequence elements found in this protein family. Surprisingly, deletion of sites required for binding of the actin monomer-binding protein profilin, a known ligand of Ena/VASP proteins, has no effect on the ability of Mena to regulate random cell motility. Our analysis revealed two features essential for Ena/VASP function in cell movement, cyclic nucleotide-dependent kinase phosphorylation sites and an F-actin binding motif. Interestingly, expression of the C-terminal EVH2 domain alone is sufficient to complement loss of Ena/VASP function in random cell motility.  相似文献   

4.
The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP''s ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.  相似文献   

5.
Bacterial actin-based motility has provided cell biologists with tools that led to the recent discovery that, in many forms of actin-based motilities, a key player is a protein complex named the Arp2/3 complex. The Arp2/3 complex is evolutionally conserved and made up of seven polypeptides involved in both actin filament nucleation and organization. Interestingly, this complex is inactive by itself and recent work has highlighted the fact that its activation is achieved differently in the different types of actin-based motilities, including the well-known examples of Listeria and Shigella motilities. Proteins of the WASP family and small G-proteins are involved in most cases. It is interesting that bacteria bypass or mimic some of the events occurring in eukaryotic systems. The Shigella protein IcsA recruits N-WASP and activates it in a Cdc42-like fashion. This activation leads to Arp2/3 complex recruitment, activation of the complex and ultimately actin polymerization and movement. The Listeria ActA protein activates Arp2/3 directly and, thus, seems to mimic proteins of the WASP family. A breakthrough in the field is the recent reconstitution of the actin-based motilities of Listeria and N-WASP-coated E. coli (IcsA) using a restricted number of purified cellular proteins including F-actin, the Arp2/3 complex, actin depolymerizing factor (ADF or cofilin) and capping protein. The movement was more effective upon addition of profilin, alpha-actinin and VASP (for Listeria). Bacterial actin-based motility is now one of the best-documented examples of the exploitation of mammalian cell machineries by bacterial pathogens.  相似文献   

6.
Studies of the actin-based motility of pathogens have provided important insights into the events occurring at the leading edge of motile cells [1] [2] [3]. To date, several actin-cytoskeleton-associated proteins have been implicated in the motility of Listeria or Shigella: vasodilator-stimulated phosphoprotein (VASP), vinculin and the actin-related protein complex of Arp2 and Arp3 [4] [5] [6] [7]. To further investigate the underlying mechanism of actin-tail assembly, we examined the localization of components of the actin cytoskeleton including Arp3, VASP, vinculin and zyxin during vaccinia, Listeria and Shigella infections. The most striking difference between the systems was that a phosphotyrosine signal was observed only at the site of vaccinia actin-tail assembly. Micro-injection experiments demonstrated that a phosphotyrosine protein plays an important role in vaccinia actin-tail formation. In addition, we observed a phosphotyrosine signal on clathrin-coated vesicles that have associated actin-tail-like structures and on endogenous vesicles in Xenopus egg extracts which are able to nucleate actin tails [8] [9]. Our observations indicate that a host phosphotyrosine protein is required for the nucleation of actin filaments by vaccinia and suggest that this phosphoprotein might be associated with cellular membranes that can nucleate actin.  相似文献   

7.
Proteins of the Wiskott-Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of approximately 10(6) M(-1). In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge.  相似文献   

8.
The Listeria monocytogenes ActA protein mediates actin-based motility by recruiting and stimulating the Arp2/3 complex. In vitro, the actin monomer-binding region of ActA is critical for stimulating Arp2/3-dependent actin nucleation; however, this region is dispensable for actin-based motility in cells. Here, we provide genetic and biochemical evidence that vasodilator-stimulated phosphoprotein (VASP) recruitment by ActA can bypass defects in actin monomer-binding. Furthermore, purified VASP enhances the actin-nucleating activity of wild-type ActA and the Arp2/3 complex while also reducing the frequency of actin branch formation. These data suggest that ActA stimulates the Arp2/3 complex by both VASP-dependent and -independent mechanisms that generate distinct populations of actin filaments in the comet tails of L. monocytogenes. The ability of VASP to contribute to actin filament nucleation and to regulate actin filament architecture highlights the central role of VASP in actin-based motility.  相似文献   

9.
Actin-based propulsion of the bacteria Listeria and Shigella mimics the forward movement of the leading edge of motile cells. While Shigella harnesses the eukaryotic protein N-WASp to stimulate actin polymerization and filament branching through Arp2/3 complex, the Listeria surface protein ActA directly activates Arp2/3 complex by an unknown mechanism. Here we show that the N-terminal domain of ActA binds one actin monomer, in a profilin-like fashion, and Arp2/3 complex and mimics the C-terminal domain of WASp family proteins in catalyzing filament barbed end branching by Arp2/3 complex. No evidence is found for side branching of filaments by ActA-activated Arp2/3 complex. Mutations in the conserved acidic (41)DEWEEE(46) and basic (146)KKRRK(150) regions of ActA affect Arp2/3 binding but not G-actin binding. The motility properties of wild-type and mutated Listeria strains in living cells and in the medium reconstituted from pure proteins confirm the conclusions of biochemical experiments. Filament branching is followed by rapid debranching. Debranching is 3-4-fold faster when Arp2/3 is activated by ActA than by the C-terminal domain of N-WASp. VASP is required for efficient propulsion of ActA-coated beads in the reconstituted motility medium, but it does not affect the rates of barbed end branching/debranching by ActA-activated Arp2/3 nor the capping of filaments. VASP therefore affects another still unidentified biochemical reaction that plays an important role in actin-based movement.  相似文献   

10.
T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76-associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3-coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.  相似文献   

11.
Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (-/-) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association-dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 x 10(8) M-1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment-detachment of VASP to F-actin allows its sliding along the growing filament.  相似文献   

12.
How can Ena/VASP proteins promote actin-based movement of the intracellular pathogen Listeria or rapid protrusion of lamellipodia but at the same time inhibit cell translocation? A report in the May 17(th) issue of Cell now offers a possible explanation for this conundrum. Bear et al. report that Ena/VASP proteins regulate cell motility by competing with capping proteins to control actin filament length and geometry at the leading edge of cells.  相似文献   

13.
Actin-based motility: stop and go with Ena/VASP proteins   总被引:11,自引:0,他引:11  
Proteins of the Ena/VASP (Enabled/vasodilator-stimulated phosphoprotein) family are involved in Abl and/or cyclic nucleotide-dependent protein kinase signaling pathways. These proteins are also crucial factors in regulating actin dynamics and associated processes such as cell-cell adhesion, platelet function and actin-based motility of both cytopathogenic Listeria and their eukaryotic host cells. Although biochemical mechanisms have emerged depicting Ena/VASP proteins as enhancers of actin filament formation, increasing evidence also suggests that these proteins have inhibitory functions in integrin regulation, cell motility and axon guidance.  相似文献   

14.
The ability of Shigella to mediate actin-based motility within the host cell is a prominent pathogenic feature of bacillary dysentery. The ability is dependent on the interaction of VirG with neural Wiskott-Aldrich syndrome protein (N-WASP), which in turn mediates recruitment of Arp2/3 complex and several actin-related proteins. In the present study, we show that profilin I is essential to the rapid movement of Shigella in epithelial cells, for which the capacity of profilin to interact with G-actin and N-WASP is critical. In COS-7 cells overexpressing either mutated profilin H119E, which failed to bind G-actin, or H133S, which is unable to interact with poly-l-proline, Shigella motility was significantly inhibited. Similarly, depletion of profilin from Xenopus egg extracts resulted in a decrease in bacterial motility that was completely rescued by adding back profilin I but not H119E or H133S. In COS-7 cells overexpressing a N-WASP mutant lacking the proline-rich domain (Deltap) unable to interact with profilin, the actin tail formation of intracellular Shigella was inhibited. In N-WASP-depleted extracts, addition of Deltap but not full-length N-WASP was unable to restore the bacterial motility. Furthermore, in a plaque formation assay with Madin-Darby canine kidney cell monolayers infected by Shigella, Madin-Darby canine kidney cells stably expressing H119E, H133S, or Deltap reduced the bacterial cell-to-cell spreading. These results indicate that profilin I associated with N-WASP is an essential host factor for sustaining efficient intra- and intercellular spreading of Shigella.  相似文献   

15.
The Listeria monocytogenes surface protein ActA mediates actin-based motility by interacting with a number of host cytoskeletal components, including Ena/VASP family proteins, which in turn interact with actin and the actin-binding protein profilin. We employed a bidirectional genetic approach to study Ena/VASP's contribution to L. monocytogenes movement and pathogenesis. We generated an ActA allelic series within the defined Ena/VASP-binding sites and introduced the resulting mutant L. monocytogenes into cell lines expressing different Ena/VASP derivatives. Our findings indicate that Ena/VASP proteins contribute to the persistence of both speed and directionality of L. monocytogenes movement. In the absence of the Ena/VASP proline-rich central domain, speed consistency decreased by sixfold. In addition, the Ena/VASP F-actin-binding region increased directionality of bacterial movement by fourfold. We further show that both regions of Ena/VASP enhanced L. monocytogenes cell-to-cell spread to a similar degree, although the Ena/VASP F-actin-binding region did so in an ActA-independent manner. Surprisingly, our ActA allelic series enabled us to uncouple L. monocytogenes speed from directionality although both were controlled by Ena/VASP proteins. Lastly, we showed the pathogenic relevance of these findings by the observation that L. monocytogenes lacking ActA Ena/VASP-binding sites were up to 400-fold less virulent during an adaptive immune response.  相似文献   

16.
The Listeria model system has been essential for the identification and characterization of key regulators of the actin cytoskeleton such as the Arp2/3 complex and Ena/vasodilator-stimulated phosphoprotein (VASP) proteins. Although the role of Ena/VASP proteins in Listeria motility has been extensively studied, little is known about the contributions of their domains and phosphorylation state to bacterial motility. To address these issues, we have generated a panel of Ena/VASP mutants and, upon expression in Ena/VASP-deficient cells, evaluated their contribution to Ena/VASP function in Listeria motility. The proline-rich region, the putative G-actin binding site, and the Ser/Thr phosphorylation of Ena/VASP proteins are all required for efficient Listeria motility. Surprisingly, the interaction of Ena/VASP proteins with F-actin and their potential ability to form multimers are both dispensable for their involvement in this process. Our data suggest that Ena/VASP proteins contribute to Listeria motility by regulating both the nucleation and elongation of actin filaments at the bacterial surface.  相似文献   

17.
Although motile endocytic vesicles form actin-rich rocket tails [Merrifield et al., 1999: Nature Cell Biol 1:72-74], the mechanism of intracellular organelle locomotion remains poorly understood. We now demonstrate that bone marrow macrophages treated with lanthanum and zinc ions, well-known secretagogue antagonists, reliably exhibit vesicle motility. This treatment results in accentuated membrane ruffling and the formation of phagosomes and early endosomes that move rapidly through the cytoplasm by assembling actin filament rocket tails. Protein-specific immunolocalization demonstrated the presence of Arp2/3 complex in the polymerization zone and throughout the actin-rich tail, whereas N-WASP was most abundant in the polymerization zone. Although Arp2/3 and N-WASP play essential roles in nucleating filament assembly, other processes (i.e., elongation and filament cross-linking) are required to produce forces needed for motility. Efficient elongation was found to require zyxin, VASP, and profilin, proteins that interact by means of their ABM-1 and ABM-2 proline-rich motifs. The functional significance of these motifs was demonstrated by inhibition of vesicle motility by the motif-specific ABM-1 and ABM-2 analogues. Furthermore, lanthanum/zinc treatment also facilitated the early onset of actin-based vaccinia motility, a process that also utilizes Arp2/3 and N-WASP for nucleation and the zyxin-VASP-profilin complex for efficient elongation. Although earlier studies using cell extracts clouded the role of oligoproline sequences in activating the polymerization zone, our studies emphasize the importance of evaluating motility in living cells.  相似文献   

18.
Regulating cellular actin assembly   总被引:7,自引:0,他引:7  
Cellular actin assembly is tightly regulated. The study of pathogen motility has led to the identification of several cellular factors that are critical for controlling this process. Pathogens such as Listeria require Ena/VASP and Arp2/3 proteins to translate actin polymerization into movement. Recent work has extended these observations and uncovered some similarities and surprising differences in the way cells and pathogens utilize the actin cytoskeleton.  相似文献   

19.
Shigella , the causative agent of bacillary dysentery, is capable of directing its movement within host cells by forming an actin comet tail. The VirG (IcsA) pro-tein expressed at one pole of the bacterium recruits neural Wiskott–Aldrich syndrome protein (N-WASP), a member of the WASP family, which in turn stimulates actin-related protein (Arp) 2/3 complex-mediated actin polymerization. As all the WASP family proteins induce actin polymerization by recruiting Arp2/3 complex, we investigated their involvement in Shigella motility. Here, we show that VirG binds to N-WASP but not to the other WASP family proteins. Using a series of chimeras obtained by swapping N-WASP and WASP domains, we demonstrated that the specificity of VirG to interact with N-WASP lies in the N-terminal region containing the pleckstrin homology (PH) domain and calmodulin-binding IQ motif of N-WASP. A conformational change in N-WASP was important for the VirG–N-WASP interaction, as elimination of the C-terminal acidic region, which is responsible for the intramolecular interaction with the central basic region of N-WASP, affected the specific binding to VirG. We observed that, in haematopoietic cells such as macrophages, polymorphonuclear leucocytes (PMNs) and platelets, WASP was predominantly expressed, whereas the expression of N-WASP was greatly suppressed. Indeed, unlike Listeria , Shigella was unable to move in macrophages at all, although the movement was restored as N-WASP was expressed ectopically. Thus, our findings demonstrate that N-WASP is a specific ligand of VirG, which determines the host cell type allowing actin-based spreading of Shigella .  相似文献   

20.
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号