首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear import of U snRNPs requires importin beta.   总被引:2,自引:1,他引:1  
I Palacios  M Hetzer  S A Adam    I W Mattaj 《The EMBO journal》1997,16(22):6783-6792
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.  相似文献   

2.
The nuclear import of assembled spliceosomal subunits, the uridine-rich small nuclear ribonucleoprotein particles (U snRNPs), is mediated by a nuclear import receptor adaptor couple of importinβ (Impβ) and snurportin1 (SPN1). In contrast to any other characterized active nuclear import, the Impβ/SPN1/U snRNP complex does not require RanGTP for the terminal release from the nuclear basket of the nuclear pore complex (NPC). The crystal structure of Impβ (127-876) in complex with the Impβ-binding (IBB) domain of SPN1 (1-65) at 2.8-Å resolution reveals that Impβ adopts an open conformation, which is unique for a functional Impβ/cargo complex, and rather surprisingly, it resembles the conformation of the Impβ/RanGTP complex. As binding of RanGTP to Impβ usually triggers the release of import complexes from the NPC, we propose that by already mimicking a conformation similar to Impβ/RanGTP the independent dissociation of Impβ/SPN1 from the nuclear basket is energetically aided.  相似文献   

3.
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.  相似文献   

4.
The Rev protein of human immunodeficiency virus type 1 is an RNA-binding protein that is required for nuclear export of unspliced and partially spliced viral mRNAs. Nuclear import of human immunodeficiency virus type 1 Rev has been suggested to depend on the classic nuclear transport receptor importin beta, but not on the adapter protein importin alpha. We now show that, similar to importin alpha, Rev is able to dissociate RanGTP from recycling importin beta, a reaction that leads to the formation of a novel import complex. Besides importin beta, the transport receptors transportin, importin 5, and importin 7 specifically interact with Rev and promote its nuclear import in digitonin-permeabilized cells. A single arginine-rich nuclear localization sequence of Rev is required for interaction with all importins tested so far. In contrast to the importin beta-binding domain of importin alpha, Rev interacts with an N-terminal fragment of importin beta. Transportin contains two independent binding sites for Rev. Hence, the mode of interaction of importin beta and transportin with Rev is clearly distinct from that with their classic import cargoes. Taken together, the viral protein takes advantage of multiple cellular transport pathways for its nuclear accumulation.  相似文献   

5.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

6.
Importin alpha plays a pivotal role in the classical nuclear protein import pathway. Importin alpha shuttles between nucleus and cytoplasm, binds nuclear localization signal-bearing proteins, and functions as an adapter to access the importin beta-dependent import pathway. In contrast to what is found for importin beta, several isoforms of importin alpha, which can be grouped into three subfamilies, exist in higher eucaryotes. We describe here a novel member of the human family, importin alpha7. To analyze specific functions of the distinct importin alpha proteins, we recombinantly expressed and purified five human importin alpha's along with importin alpha from Xenopus and Saccharomyces cerevisiae. Binding affinity studies showed that all importin alpha proteins from humans or Xenopus bind their import receptor (importin beta) and their export receptor (CAS) with only marginal differences. Using an in vitro import assay based on permeabilized HeLa cells, we compared the import substrate specificities of the various importin alpha proteins. When the substrates were tested singly, only the import of RCC1 showed a strong preference for one family member, importin alpha3, whereas most of the other substrates were imported by all importin alpha proteins with similar efficiencies. However, strikingly different substrate preferences of the various importin alpha proteins were revealed when two substrates were offered simultaneously.  相似文献   

7.
U1A is a component of the uracil-rich small nuclear ribonucleoprotein. The molecular mechanism of nuclear import of U1A was investigated in vivo and in vitro. When recombinant deletion mutants of U1A are injected into the BHK21 cell cytoplasm, the nuclear localization signal (NLS) of U1A is found in the N-terminal half of the central domain (residues 100-144 in mouse U1A). In an in vitro assay, it was found that the U1A-NLS accumulated in only a portion of the nuclei in the absence of cytosolic extract. In contrast, the addition of importin alpha/beta and Ran induced the uniform nuclear accumulation of U1A-NLS in all cells. Furthermore, U1A was found to bind the C-terminal portion of importin alpha. In addition, the in vitro nuclear migration of full-length U1A was found to be exclusively dependent on importin alpha/beta and Ran. Moreover, in living cells, the full-length U1A accumulated in the nucleus in a Ran-dependent manner, and nuclear accumulation was inhibited by the importin beta binding domain of importin alpha. These results suggest that the nuclear import of U1A is mediated by at least two distinct pathways, an importin alpha/beta and Ran-dependent and an -independent pathway in permeabilized cells, and that the latter pathway may be suppressed in intact cells.  相似文献   

8.
9.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

10.
The "classical" nuclear import pathway depends on importins alpha and beta. Humans have only one importin beta, while six alpha importins have been described. Whether or not distinct alpha importins are essential for specific import pathways in living human cells is unclear. We used RNA interference technology to specifically down-regulate the expression of ubiquitously expressed human alpha importins in HeLa cells. Down-regulation of importins alpha3, alpha5, alpha7, and beta strongly inhibited HeLa cell proliferation, while down-regulation of importins alpha1 and alpha4 had only a minor effect or no effect. Nucleoplasmin import was not prevented by down-regulation of any alpha importin, indicating that the importin alpha/beta pathway was generally not affected. In contrast, importin alpha3 or alpha5 down-regulation specifically inhibited the nuclear import of the Ran guanine nucleotide exchange factor, RCC1. Coinjection of recombinant alpha importins and RCC1 into down-regulated cells demonstrated that these transport defects were specifically caused by the limited availability of importin alpha3 in both cases. Thus, importin alpha3 is the only alpha importin responsible for the classical nuclear import of RCC1 in living cells.  相似文献   

11.
A classical nuclear localization signal (NLS)-containing protein is transported into the nucleus via the formation of a NLS-substrate/importin alpha/beta complex. In this study, we found that importin alpha migrated into the nucleus without the addition of importin beta, Ran or any other soluble factors in an in vitro transport assay. A mutant importin alpha lacking the importin beta-binding domain efficiently entered the nucleus. Competition experiments showed that this import pathway for importin alpha is distinct from that of importin beta. These results indicate that importin alpha alone can enter the nucleus via a novel pathway in an importin beta- and Ran-independent manner. Furthermore, this process is evolutionarily conserved as similar results were obtained in Saccharomyces cerevisiae. Moreover, the import rate of importin alpha differed among individual nuclei of permeabilized cells, as demonstrated by time-lapse experiments. This heterogeneous nuclear accumulation of importin alpha was affected by the addition of ATP, but not ATPgammaS. These results suggest that the nuclear import machinery for importin alpha at individual nuclear pore complexes may be regulated by reaction(s) that require ATP hydrolysis.  相似文献   

12.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

13.
14.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

15.
The initial steps of spliceosomal small nuclear ribonucleoprotein (snRNP) maturation take place in the cytoplasm. After formation of an Sm-core and a trimethylguanosine (TMG) cap, the RNPs are transported into the nucleus via the import adaptor snurportin1 (SPN) and the import receptor importin-beta. To better understand this process, we identified SPN residues that are required to mediate interactions with TMG caps, importin-beta, and the export receptor, exportin1 (Xpo1/Crm1). Mutation of a single arginine residue within the importin-beta binding domain (IBB) disrupted the interaction with importin-beta, but preserved the ability of SPN to bind Xpo1 or TMG caps. Nuclear transport assays showed that this IBB mutant is deficient for snRNP import but that import can be rescued by addition of purified survival of motor neurons (SMN) protein complexes. Conserved tryptophan residues outside of the IBB are required for TMG binding. However, SPN can be imported into the nucleus without cargo. Interestingly, SPN targets to Cajal bodies when U2 but not U1 snRNPs are imported as cargo. SPN also relocalizes to Cajal bodies upon treatment with leptomycin B. Finally, we uncovered an interaction between the N- and C-terminal domains of SPN, suggesting an autoregulatory function similar to that of importin-alpha.  相似文献   

16.
S J?kel  D G?rlich 《The EMBO journal》1998,17(15):4491-4502
The assembly of eukaryotic ribosomal subunits takes place in the nucleolus and requires nuclear import of ribosomal proteins. We have studied this import in a mammalian system and found that the classical nuclear import pathway using the importin alpha/beta heterodimer apparently plays only a minor role. Instead, at least four importin beta-like transport receptors, namely importin beta itself, transportin, RanBP5 and RanBP7, directly bind and import ribosomal proteins. We found that the ribosomal proteins L23a, S7 and L5 can each be imported alternatively by any of the four receptors. We have studied rpL23a in detail and identified a very basic region to which each of the four import receptors bind avidly. This domain might be considered as an archetypal import signal that evolved before import receptors diverged in evolution. The presence of distinct binding sites for rpL23a and the M9 import signal in transportin, and for rpL23a and importin alpha in importin beta might explain how a single receptor can recognize very different import signals.  相似文献   

17.
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.  相似文献   

18.
Nuclear import and export signals on macromolecules mediate directional, receptor-driven transport through the nuclear pore complex (NPC) by a process that is suggested to involve the sequential binding of transport complexes to different nucleoporins. The directionality of transport appears to be partly determined by the nucleocytoplasmic compartmentalization of components of the Ran GTPase system. We have analyzed whether the asymmetric localization of discrete nucleoporins can also contribute to transport directionality. To this end, we have used quantitative solid phase binding analysis to determine the affinity of an importin beta cargo complex for Nup358, the Nup62 complex, and Nup153, which are in the cytoplasmic, central, and nucleoplasmic regions of the NPC, respectively. These nucleoporins are proposed to provide progressively more distal binding sites for importin beta during import. Our results indicate that the importin beta transport complex binds to nucleoporins with progressively increasing affinity as the complex moves from Nup358 to the Nup62 complex and to Nup153. Antibody inhibition studies support the possibility that importin beta moves from Nup358 to Nup153 via the Nup62 complex during import. These results indicate that nucleoporins themselves, as well as the nucleocytoplasmic compartmentalization of the Ran system, are likely to play an important role in conferring directionality to nuclear protein import.  相似文献   

19.
Functional nuclear proteins are selectively imported into the nucleus by transport factors such as importins alpha and beta. The relationship between the efficiency of nuclear protein import and the cell cycle was measured using specific import substrates for the importin alpha/beta-mediated pathway. After the microinjection of SV40 T antigen nuclear localization signal (NLS)-containing substrates into the cytoplasm of synchronized culture cells at a certain phase of the cell cycle, the nuclear import of the substrates was measured kinetically. Cell cycle-dependent change in import efficiency, but not capacity, was found. That is, import efficiency was found low in the early S, G2/M, and M/G1 phases compared with other phases. In addition, we found that the extent of co-imunoprecipitation of importin alpha with importin beta from cell extracts was strongly associated with import efficiency. These results indicate that the importin alpha/beta-mediated nuclear import machinery is regulated in a cell cycle-dependent manner through the modulation of interaction modes between importins alpha and beta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号