首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
The amount of glucose-repressible alcohol dehydrogenase is regulated by the amount of its functional messenger RNA. ADHII2 protein was detected by a radioimmune assay and differentiated from ADHI, the classical ADH isozyme, by limited proteolysis with Staphylococcus aureus protease. When yeast containing the wild-type alleles for ADR2 (the ADH II structural locus) and for ADR1 (its positive regulatory gene) were pulse-labeled with [35S]methionine during derepression, radioactive label accumulated in the antibody-precipitated ADHII coterminously with the appearance of ADHII activity. The kinetics of functional ADHII mRNA appearance during derepression in this strain were shown to be the same as those for ADHII protein synthesis in vivo when RNA, extracted from derepressed cells, was translated in a wheat germ cell-free translation system.The role of the positive regulatory gene, ADR1, in ADHII expression was analyzed using two strains mutated at that locus. Yeast containing the adr1-1 allele are incapable of derepressing ADHII activity. When this strain was pulselabeled with [35S]methionine during derepression, approximately one-tenth to one-twentieth the level of ADHII protein synthesis was detected as in the wild-type strain. When RNA was extracted during derepression from cells containing the udr1-1 allele and translated in a wheat germ cell-free system, little functional ADHII mRNA was found to be present.The role of the ADR1 gene was further analyzed using a strain containing the ADR1-5c allele, which allows constitutive synthesis of ADHII activity. In this strain during glucose repression. ADHII protein synthesis and amount of functional mRNA were at levels comparable to those found for the wild-type strain after complete derepression. Similar kinetics of ADHII protein synthesis and of mRNA accumulation during derepression were observed in the strain carrying the ADR1-5c allele when compared to that carrying the ADR1 allele, but the absolute amounts were greater by three- to fourfold in cells containing the ADR1-5c allele. These results indicate that the ADR1 gene acts to increase the level of functional ADHII mRNA during derepression.  相似文献   

6.
7.
8.
9.
The SNF4 gene is required for expression of glucose-repressible genes in response to glucose deprivation in Saccharomyces cerevisiae. Previous evidence suggested that SNF4 is functionally related to SNF1, another essential gene in this global regulatory system that encodes a protein kinase. Increased SNF1 gene dosage partially compensates for a mutation in SNF4, and the SNF4 function is required for maximal SNF1 protein kinase activity in vitro. We have cloned SNF4 and identified its 1.2-kilobase RNA, which is not regulated by glucose repression. A 36-kilodalton SNF4 protein is predicted from the nucleotide sequence. Disruption of the chromosomal SNF4 locus revealed that the requirement for SNF4 function is less stringent at low temperature (23 degrees C). A bifunctional SNF4-lacZ gene fusion that includes almost the entire SNF4 coding sequence was constructed. The fusion protein was shown by immunofluorescence microscopy to be distributed throughout the cell, with partial localization to the nucleus. The SNF4-beta-galactosidase protein coimmunoprecipitated with the SNF1 protein kinase, thus providing evidence for the physical association of the two proteins.  相似文献   

10.
11.
12.
13.
14.
15.
L. Karnitz  M. Morrison    E. T. Young 《Genetics》1992,132(2):351-359
Using a new selection protocol we have identified and preliminarily characterized three new loci (ADR7, ADR8 and ADR9) which affect ADH2 (alcohol dehydrogenase isozyme II) expression. Mutants were selected which activate ADH2 expression in the presence of an over-expressed, normally inactive ADR1 allele. The mutants had very similar phenotypes with the exception that one was temperature sensitive for growth. In the absence of any ADR1 allele, the mutants allowed ADH2 to partially escape glucose repression. However, unlike wildtype strains deleted for ADR1, the mutants were able to efficiently derepress ADH2. The mutations allowed a small escape from glucose repression for secreted invertase, but had no effect on the glucose repression of isocitrate lyase or malate dehydrogenase. The mutations were shown to be nonallelic to a wide variety of previously characterized mutations, including mutations that affect other glucose-repressed enzymes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号