首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic chromosome pairing of triploid and trisomic Crepis capillaris was analysed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I. This system allows identification and separate analysis of each chromosome of the C. capillaris genome. Prophase I trivalent frequencies are very high in all three trisomes and only slightly dependent on chromosome size. At metaphase I, on the other hand, trivalent frequencies are much lower and strongly dependent on chromosome size. There is no evidence for trivalent elimination during prophase I in this system, and the reduction in trivalent frequency at metaphase I can be explained by an insufficiency of appropriately placed chiasmata. The high prophase I trivalent frequencies far exceed the two-thirds expected on a simple model with two terminal independent pairing initiation sites per trisome, suggesting that multiple pairing initiation occurs. Direct observations reveal high frequencies of pairing partner switches (PPSs) in prophase I trisomes, which confirms this supposition. The numbers of PPSs per trisome shows a better fit to the Poisson than to the binomial distribution and their positional distribution along trisomes is random and non-localized. All these observations favour a model of pairing initiation in trisomes based on a large number of evenly distributed autonomous pairing sites each with a uniform and low probability of generating a PPS.by C. Heyting  相似文献   

2.
J H Jong  A M Wolters  J M Kok  H Verhaar  J Eden 《Génome》1993,36(6):1032-1041
Three somatic hybrids resulting from protoplast fusions of a diploid kanamycin-resistant line of tomato (Lycopersicon esculentum) and a dihaploid hygromycin-resistant transformant of a monohaploid potato (Solanum tuberosum) line were used for a cytogenetic study on chromosome pairing and meiotic recombination. Chromosome counts in root-tip meristem cells revealed two hypotetraploids with chromosome complements of 2n = 46 and one with 2n = 47. Electron microscope analyses of synaptonemal complex spreads of hypotonically burst protoplasts at mid prophase I showed abundant exchanges of pairing partners in multivalents involving as many as eight chromosomes. In the cells at late pachytene recombination nodules were found in multivalents on both sides of pairing partner exchanges, indicating recombination at both homologous and homoeologous sites. Light microscope observations of pollen mother cells at late diakinesis and metaphase I also revealed multivalents, though their occurrence in low frequencies betrays the reduction of multivalent number and complexity. Precocious separation of half bivalents at metaphase I and lagging of univalents at anaphase I were observed frequently. Bridges, which may result from an apparent inversion loop found in the synaptonemal complexes of a mid prophase I nucleus, were also quite common at anaphase I, though the expected accompanying fragments could be detected in only a few cells. Most striking were the high frequencies of first division restitution in preparations at metaphase II/anaphase II, giving rise to unreduced gametes. In spite of the expected high numbers of balanced haploid and diploid gametes, male fertility, as revealed by pollen staining, was found to be negligible.  相似文献   

3.
Theoretical relationships between pachytene multivalent and bivalent frequencies in hexaploids are deduced from a model, based on chromosomes showing sequential association at equidistant pairing sites and uniform propensities for partner exchange throughout their lengths. These relationships approach a limit as the number of pairing sites tends to infinity and the intervals between them tend to zero; at the limit pairing is continuous and the quadrivalent/sexivalent ratio is at a minimum. A maximum of 34·3% of the complement is expected to form quadrivalents when there are two pairing sites per chromosome but this peak is reduced by increasing numbers of pairing sites to a limit of 29·6% when pairing is continuous. Where chromosome length is proportional to the number of pairing sites there will be a log/linear relationship between bivalent frequency and chromosome length otherwise a log/log relationship is expected. In the light of these conclusions, observations on experimental hexaploids could be used to provide estimates of the number of pairing sites on each chromosome.  相似文献   

4.
The meiotic behaviour of chromosomes 1R, 2R and 5R was studied in C-banded preparations of autotetraploid rye. Analysis of pairing and chiasma formation was based on metaphase I configurations, using the model designed by Sybenga, with slight modifications. Frequencies of two modes of pairing (one quadrivalent or two bivalents) differed from those expected for random pairing. Although preferential pairing for some arm pairs of chromosome 2R was detected, this did not seem to be the cause of the increased bivalent pairing. This increase was attributed to either the spatial separation of the four homologous chromosomes in some premeiotic cells into two groups of two, or a correction of the synaptonemal complex, or both. The number of chiasmate associations showed variation between chromosomes and between arms within the same chromosome. It was closely related to arm length, but different after quadrivalent and bivalent pairing. This is suggested to be a consequence of partner exchange interfering with pairing and, consequently, with chiasma formation, and a different chiasma distribution after quadrivalent pairing. Variation between chromosomes in the frequencies of alternate and adjacent co-orientation in metaphase I quadrivalents without interstitial chiasmata suggests that the relative positions of the centromeres in the quadrivalent influence their co-orientation.  相似文献   

5.
The distribution of meiotic pairing sites on a Drosophila melanogaster autosome was studied by characterizing patterns of prophase pairing and anaphase segregation in males heterozygous for a number of 2-Y transpositions, collectively coveringall of chromosome arm 2R and one-fourth of chromosome arm 2L. It was found that all transpositions involving euchromatin from chromosome 2, even short stretches, increased the frequency of prophase I quadrivalents involving the sex and second chromosome bivalents above background levels. Quadrivalent frequencies were the same whether the males carried both elements of the transposition or just the Dp (2;Y) element along with two normal chromosome 2s, indicating that pairing is non-competitive. The frequency of quadrivalents was proportional to the size of the transposed region, suggesting that pairing sites are widely distributed on chromosome 2. Moreover, all but the smallest transpositions caused a detectable bias in the segregation ratio, in favor of alternate segregations, indicating that the prophase associations were effective in orienting centromeres to opposite poles. One transposition involving only heterochromatin of chromosome 2 had no effect on quadrivalent frequency, consistent with previous evidence that autosomal heterochromatin lacks meiotic pairing ability in males. One region at the base of chromosome arm 2L proved to be especially effective in stimulating quadrivalent formation and anaphase segregation, indicating the presence of a strong pairing site in this region. It is concluded that autosomal pairing in D. melanogaster males is based on general homology, despite the lack of homologous recombination.by A.C. Spradling  相似文献   

6.
The meiotic pairing behaviour of four B isochromosomes of Crepis capillaris was studied by synaptonemal complex (SC) surface spreading of pollen mother cells. The four B chromosomes form a tightly associated group, separate from the standard chromosomes, throughout zygotene and pachytene. All four B chromosomes are also folded around their axis of symmetry, the centromere, and the eight homologous arms are closely aligned from the earliest prophase I stages. A high frequency of multivalent pairing of the four B chromosomes is observed at pachytene, in excess of 90%, mirroring the situation observed at metaphase I but exceeding the frequency expected (76.2%) on the assumption of random pairing among the eight B isochromosome arms with a single distal pairing initiation site per arm. The higher than expected frequency of multivalents is due to the occurrence of multiple pairing initiations along the B isochromosome arms, resulting in high frequencies of pairing partner switches. Pairing of the standard chromosome set is frequently incomplete in the presence of four B chromosomes, and abnormalities of SC structure such as thickening and splitting of axes and lateral elements are also frequently seen. Similarly, B chromosomes show partial pairing failure, the extent of which is correlated with pairing failure in the standard chromosome set. The B chromosomes themselves also show abnormalities of SC structure. Both standard and B chromosomes show non-homologous foldback pairing of regions that have failed to pair homologously.by D. Schweizer  相似文献   

7.
J. Sybenga 《Chromosoma》1975,50(2):211-222
In autotetraploids, chromosome pairing may be in the form of quadrivalents or bivalent pairs. Whether or not the quadrivalents are maintained until first meiotic metaphase depends on the formation of chiasmata. The relative frequencies of M I configurations thus contain information both on pairing and on chiasma formation. With distal chiasma localisation six configurations can be recognised and their relative frequencies determined: ring quadrivalents, chain quadrivalents, trivalents (with univalent), ring bivalents, open (rod) bivalents, univalent pairs. These represent five degrees of freedom permitting five parameters to be estimated: the frequency (f) of quadrivalent pairing; the frequencies of chiasmate association of the two ends (arms in metacentrics), a′, b′, after quadrivalent pairing, and a, b after bivalent pairing. — The appropriate formulae have been derived and applied to observations on Tradescantia virginiana (4n=24) which has pronounced distal chiasma localisation. Slight modifications make the model applicable to autotetraploids with interstitial in addition to distal chiasmata. In T. virginiana, chromosome pairing appeared to be random between homologues (65.8% quadrivalent pairing; 55.4% observed at M I). After quadrivalent pairing chiasmate association is frequent in the “average long” arm (95.0%) and much less so in the other arm (60.5%). This is attributed to partner exchange. After bivalent pairing chiasma frequencies are still different for the two arms (93.8% and 83.5% association respectively) but much less pronounced. Various complications are discussed.  相似文献   

8.
G Jenkins  R Chatterjee 《Génome》1994,37(5):784-793
The influence of chromosome structure upon pairing behaviour during meiosis was investigated by comparing four autotetraploid genotypes of rye (Secale cereale) containing homologous chromosome sets with different degrees of structural similarity. The series provided a range of genotypes that, at one extreme, contained structurally identical chromosome sets and, at the other extreme, sets that are certainly more heterozygous in the genic sense and probably also more diverse from a purely structural viewpoint. Relative frequencies of pairing configurations at meiotic prophase and metaphase I were compared by electron microscopy of whole-mount surface-spread synaptonemal complex complements and light microscopy of squash preparations. Despite unexpectedly low quadrivalent frequencies over all four genotypes, higher mean bivalent frequencies appeared to be associated with greater homologue diversity. In other words, greater structural divergence between chromosome sets appears to facilitate more efficient discrimination between homologous and identical chromosomes that drives the formation of bivalents. Statistical comparisons were not able to confirm in some cases the significance of the observed pattern of pairing behaviour.  相似文献   

9.
Chromosomal pairing of one triploid and three tetraploid plants of rye, Secale cereale, was analyzed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I cells. Prophase I is characterized by: (i) the weak alignment showed by the three or four unsynapsed or partially homologous synapsed axes; (ii) the low number ber of pairing partner switches (PPSs) displayed by both trivalents and quadrivalents; and (iii) the existence of complex multivalents in which up to 13 chromosomes in the triploid and 22 chromosomes in the tetraploids were involved. However, only few heterologous chromosomal associations were maintained at metaphase I. The results obtained are discussed under the assumptions of the random end pairing model with some modifications.  相似文献   

10.
Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Meiosis was analyzed cytogenetically in autotetraploids of Arabidopsis, including both established lines and newly generated autotetraploid plants. Fluorescent in situ hybridization with 5S and 45S rDNA probes was used to identify the different chromosomes at metaphase I of meiosis. Multivalents were observed frequently in all the lines analyzed, but there were significant differences in multivalent frequency not only between the newly generated tetraploids and the established lines but also among the different established lines. The new tetraploids showed high multivalent frequencies, exceeding the theoretical 66.66% predicted by the simple random-end pairing model, in some cases significantly, thus indicating that Arabidopsis autotetraploids have more than two autonomous pairing sites per chromosome, despite their small sizes. The established lines showed fewer multivalents than the new autotetraploids did, but the extent of this reduction was strongly line and chromosome dependent. One line in particular showed a large reduction in multivalents and a concomitant increase in bivalents, while the other lines showed lesser reductions in multivalents. The reduction in multivalents was not uniformly distributed across chromosomes. The smaller chromosomes, especially chromosomes 2 and 4, showed the most marked reductions while the largest chromosome (1) showed virtually no reduction compared to the new tetraploids. It is concluded that the established autotetraploid lines have undergone a partial diploidization of meiosis, but not necessarily genetical diploidization, since their creation. Possible mechanisms for the resulting change in meiotic chromosome behavior are discussed.  相似文献   

11.
E. Benavente  J. Orellana 《Genetics》1991,128(2):433-442
Preferential chromosome association at metaphase I has been analyzed and compared in autotetraploid cells obtained by colchicine treatment of hybrid diploid rye plants with different degrees of chromosomal divergence between homologs. The tendency to identical over homologous, but not identical, pairing preferences detected when homologous partners are contributed by less related parental lines indicates that chromosome differentiation may play an important role on preferential pairing behavior of polyploids. However, associations between more similar (identical) partners are not always favored, thus suggesting that additional factors must be considered. Other hypotheses for explaining pairing preferences in competitive situations are discussed. No clear relationship has been found between multivalent frequencies at metaphase I and chromosome differentiation between homologs or preferential pairing behavior. Therefore evolutionary divergences among related genomes should be carefully stated when evaluated from metaphase I configuration frequencies.  相似文献   

12.
R Chatterjee  G Jenkins 《Génome》1993,36(1):131-138
Electron microscopy of whole-mount surface-spread synaptonemal complex complements and conventional light microscopy of chromosomes at first metaphase of meiosis were used to compare the relative frequencies of pairing configurations at the two stages in inbred autotetraploid rye (Secale cereale L.). Statistical tests showed significantly fewer multivalents at first metaphase than expectations based on random initiation of synapsis at each telomeric site within each group of four homologues. Direct observations of synaptic behaviour of chromosomes showed that this deviation is due primarily to a preponderance of bivalents during zygotene and pachytene. It is also the result of a significant drop in multivalent frequency from meiotic prophase to metaphase I, which is attributable both to a lack of chiasmata with which to consolidate multivalents and inhibition of chiasma formation in synaptonemal complex segments of multivalents that are nonhomologous.  相似文献   

13.
A L Cerro  A Fernández  J L Santos 《Génome》1994,37(6):1035-1040
Meiotic pairing behaviour of one and two B isochromosomes (iso-Bs) in the grasshopper Omocestus burri was analysed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I. Iso-Bs display a peripheral location in the surface-spread nuclei and early pairing relative to that of the long members of the A set. Single iso-Bs undergo foldback pairing to give symmetrical hairpin loops. Two iso-Bs may show interarm pairing, mterchromosome pairing, or combinations of the two. Pericentromeric interarm pairing can be delayed in one or both Bs and this delay is mostly observed in bivalents with pairing partner switches. The iso-B bivalent frequencies observed in the three males analysed were 64, 44, and 41%, respectively; the two latter values were significantly lower than the 66% predicted by the random-end-pairing model. There is a reduction in the frequencies of iso-ring univalents (in 1B males) and bivalents (in 2B males) from pachytene to metaphase I. Similarities and differences between the pairing behaviour of iso-Bs from different species are also discussed.  相似文献   

14.
A J Wallace  R S Callow 《Génome》1995,38(1):133-139
Pairing behaviour has been studied in PMCs of C0 autotetraploids of seven Lathyrus species exhibiting a range of genome size (10.8-19.9 pg DNA/2C). Each tetrasome within a C0 autotetraploid is equally likely to form a quadrivalent and the great majority of metaphase multivalents (96%) gave evidence of only a single synaptic exchange. Four components of variance in bivalent frequency were detected in the tetraploids. Both chiasma-dependent (0.5%) and chiasma-independent (4.2%) interspecific components were observed, whereas the only intraspecific component between plants (2.8%) was independent of variation in chiasma frequency. The only nonresidual component of variance in minimal incidence of synaptic exchange was interspecific (3.9%) and independent of variation in multivalent frequency.  相似文献   

15.
A. Davies  G. Jenkins  H. Rees 《Genetica》1990,82(2):103-110
The chromosomes of the two closely related diploid species, Gibasis consobrina and G. karwinskyana (Commelinaceae; 2n=2x=10), are morphologically alike, yet form few chiasmate associations at metaphase I in the f1 hybrid. During meiotic prophase, however, synaptonemal complexes join the majority of the chromosomes of the complement in complex multiple pairing configurations. The F1 hybrid between different tetraploid genotypes of the same two species similarly forms multivalents during meiotic prophase, which are subsequently eliminated in favour of strictly homologous bivalents before metaphase I. One quadrivalent comprising interchange chromosomes inherited from one of the parents, usually persists to first metaphase. Evidently the resolution of multivalents to bivalents at first metaphase, which accounts for diploidisation, is not attributable to the elimination of multivalents per se, but of multivalents comprising chromosomes of limited homology.  相似文献   

16.
Summary A mutant form of weedy rye characterized by male and female sterility and having a hereditary block in the chromosome synapsis has been found and described. Genetic analysis has shown the synapsis block to be determined by the recessive allele of a gene designated as sy-1. Electron microscopy of surface-spread microsporocyte nuclei revealed the complete absence of the synaptonemal complex over the whole meiotic prophase I, although the axial cores were perfectly formed by each chromosome. Only univalents were observed at metaphase I, their average number ranging from 13.1 to 14.0 per cell. A precocious distribution of univalents at the poles is observed at metaphase I. All of the later stages of meiosis were irregular and resulted in the formation of abnormal microspores. Thus, the mutant proves to be asynaptic because of the blocked initiation of synapses at prophase I.  相似文献   

17.
Variation in chromosome number due to polyploidy can seriously compromise meiotic stability. In autopolyploids, the presence of more than two homologous chromosomes may result in complex pairing patterns and subsequent anomalous chromosome segregation. In this context, chromocenter, centromeric, telomeric and ribosomal DNA locus topology and DNA methylation patterns were investigated in the natural autotetraploid, Arabidopsis arenosa. The data show that homologous chromosome recognition and association initiates at telomeric domains in premeiotic interphase, followed by quadrivalent pairing of ribosomal 45S RNA gene loci (known as NORs) at leptotene. On the other hand, centromeric regions at early leptotene show pairwise associations rather than associations in fours. These pairwise associations are maintained throughout prophase I, and therefore likely to be related to the diploid-like behavior of A. arenosa chromosomes at metaphase I, where only bivalents are observed. In anthers, both cells at somatic interphase as well as at premeiotic interphase show 5-methylcytosine (5-mC) dispersed throughout the nucleus, contrasting with a preferential co-localization with chromocenters observed in vegetative nuclei. These results show for the first time that nuclear distribution patterns of 5-mC are simultaneously reshuffled in meiocytes and anther somatic cells. During prophase I, 5-mC is detected in extended chromatin fibers and chromocenters but interestingly is excluded from the NORs what correlates with the pairing pattern.  相似文献   

18.
In the tetraploid somatic hybrid between the diploid Lycopersicon species L. esculentum (tomato) and L. peruvianum, synaptonemal complexes formed quadrivalents in 73 of the 120 sets of four chromosomes (60.8%) in 10 cells studied in detail at pachytene. Of these, 43 had one pairing partner exchange, 22 had two, and 8 had three, very close to a Poisson distribution. The points of pairing partner exchange were concentrated at the middle of the two arms. The frequency per arm corresponded with physical arm length. There was a sharp drop around the centromere, and pericentric heterochromatin had a slightly lower probability of being involved in pairing partner exchange than euchromatin. The chromosomes align before pairing and there are several points of pairing initiation, with concentrations at or near the ends and the centromere. From zygotene to late pachytene the quadrivalent frequency decreased considerably. At late pachytene it was lower than expected with the observed high frequency of pairing partner exchange. Pairing affinity between species was only slightly lower than affinity within species, in spite of considerable genetic differentiation. The frequency of recombination nodules increased from early to late zygotene and then decreased strongly to full pachytene. There is a highly significant negative correlation between percent pairing and SC length. At metaphase I the frequency of quadrivalents was 0.444, and branched quadrivalents were rare, probably caused by interference and restriction of chiasma formation to distal euchromatin. Metaphase I quadrivalent frequency is a relatively good indication of pairing affinity in this material.  相似文献   

19.
Tomkiel JE 《Genetica》2000,109(1-2):95-103
In male Drosophila melanogaster, anomalies in sex chromosome pairing at meiosis often lead to complete or partial sperm dysfunction. This observation has led to the suggestion that defects in either the efficiency or configuration of chromosome pairing at metaphase trigger a checkpoint mechanism that leads to the elimination of meiotic products. Here, we discuss this model in consideration of recent observations on the conservation of metaphase checkpoint components in male meiosis, and on the phenotype of new alleles of the male-specific meiotic mutant teflon. Based on these observations, we propose an alternative hypothesis for the cause of sperm dysfunction in cases of chromosomal sterility and drive. We suggest that disruption of the prophase compartmentalization of sex chromatin, rather than abnormal pairing at metaphase, may be the causative defect. Such disruption may occur as a result of perturbations in sex chromosome pairing, or by translocations involving autosomal and sex chromatin. We discuss how this hypothesis may account for previously described examples chromosomal causes of meiotic drive and sterility in Drosophila. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
C. Tease  G. Fisher 《Chromosoma》1989,97(4):315-320
Pachytene oocytes from foetal mice heterozygous for the translocation T(14; 15)6Ca were screened for evidence of a production-line effect on chromosome pairing. Metaphase I oocytes from adult heterozygotes were also examined to determine whether any such effect on pahytene chromosome pairing is subsequently repeated during adult reproductive life as anticipated by the production-line hypothesis. It was found that as gestation proceeded the proportion of pachytene oocytes with a translocation quadrivalent declined and that with a trivalent and univalent correspondingly increased. That is, there was evidence of variation in pairing behaviour of the translocation at different times of gestation. In contrast, the proportions of metaphase I cells with either a quadrivalent or a trivalent plus univalent did not vary between adult females of different ages. Thus if the variation observed at pachytene was the result of a production-line effect, clearly this was not reflected in the behaviour of the translocation at metaphase I. Our observations therefore do not support the production line hypothesis for the maternal age effect on nondisjunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号