首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vitreous humor of the eye is modelled as a homogeneous viscoelastic sphere. The analysis provides a relation for the displacement amplitude and phase following oscillatory and step excitations, as functions of the storage and loss moduli of the vitreous gel, and allows calculation of the resolution requirements for a non-invasive optically-based diagnostic method for the viscoelastic properties of the vitreous.  相似文献   

2.
Amino acid changes in the retina, vitreous, lens, iris-ciliary body and cornea of the rat eye were determined during postnatal growth. The amino acid concentrations of the ocular tissues showed varying profiles at various developmental stages. These results suggest a different timetable for development of each ocular tissue or indicate a synthesis of specific proteins in the postnatal period. Adult amino acid levels appeared to be fully reached on the 30th day after birth at the latest. Quantitatively the greatest changes were observed in taurine concentrations, which increased in all five ocular tissues during maturation. GABA changes paralleled those of taurine in the retina, whereas in the other ocular tissues GABA changes were very low. The greatest decrease in glutamic acid and aspartic acid concentration during postnatal development was in the lens, where these amino acids probably are needed for the synthesis of the lenticular proteins, the alpha-, beta-, and gamma-crystallines.  相似文献   

3.
Structure for Hyaluronic Acid   总被引:5,自引:0,他引:5  
THE mucopolysaccharide hyaluronic acid exists naturally as a hydrated gel. It is the constituent of synovial fluid which acts as a lubricant; it also occurs in the vitreous humour where its function is probably to maintain the precise shape of the eye. Chemically it is a regular, unbranched polymer with a repeating unit of the type (-N-G-)n where N is N-acetylglucosamine and G is glucuronic acid. The glycosidic linkages N to G and G to N are 1e, 4e and le, 3e respectively (Fig. 1). Our arguments are based on the postulate that both glucopyranose rings are in the C1 chain conformation.  相似文献   

4.
The nereid polychaete, Platynereis dumerilii, possess two pairs of post-trochophoral eyes with one vitreous body each. The development of these eyes has first been observed in 2-day-old larvae. Whether the eye anlagen arise from stem cells or from undifferentiated ectodermal tissue was not determined. At first, the anlagen of the anterior and the posterior eyes adjoin each other. They separate in late 3-day-old larvae. The first separated eye complexes consist each of two supporting and two sensory cells. The supporting cells synthesize two different kinds of granules, the pigment granules of the pigment cup and the prospective tubules of the vitreous body. These tubules accumulate in the distal process of the supporting cell. The vitreous body is formed by compartments of the supporting cells filled with the osmiophilic vitreous body tubules. The short, bulbar photosensory processes bear microvilli that emerge into the ocular cavity. At the apex of each sensory cell process, a single cilium (or occasionally two) arises. The sensory cells contain a different kind of pigment granule within their necks at the level of the pigment cup. The rate of eye development and differentiation varies. New supporting cells are added to the rim of the eye cup. They contribute to the periphery of the vitreous body like onion skins, and sensory cells move between supporting cells. The older the individual compartments of the vitreous body are, the more densely packed is their content of vitreous body tubules. Elongation of the sensory and supporting cell processes of the older cells increases the volume of the eye. The eyespots of the trochophore are briefly described as of the two-celled rhabdomeric type with a single basal body with ciliary rootlet.  相似文献   

5.
To adapt the physical properties of living materials to their biological function, nature developed various types of polymers with outstanding physical behavior. One example is the vitreous body, which is important intraocular elements not only because of its optical and mechanical performances, but also due to its important role in the pathogenesis and treatment of conditions affecting adjacent tissues and eventually the whole eye. Here, we report a novel biocompatible material for injectable vitreous substitute, composed of thermosensitive amphiphilic polymer, which is capable of forming a transparent gel in the vitreous cavity. It is nontoxic, provides adequate support for the retina, and allows light to reach the sensory elements at the back of the eye. The amphiphilic polymer exhibits mechanical stability by assembling to form highly interconnected hydrophobic domains, which leads to the constitution of a network structure.  相似文献   

6.
Glycosaminoglycans of the embryonic chicken vitreous were characterized and then were used as markers to establish which tissues synthesize the vitreous humor during development. The glycosaminoglycans are predominantly chondroitin sulfates by several criteria. They are resistant to streptomyces hyaluronidase, an enzyme which degrades only hyaluronate, and are digested by testicular hyaluronidase and chondroitinase AC, enzymes which degrade hyaluronate plus chondroitin 4- and 6-sulfates. On electrophoresis on cellulose acetate in 0.15 M phosphate buffer, pH 6.7, the vitreous glycosaminoglycans migrate slightly slower than authentic chondroitin sulfate, but, in 0.1 N HCl, they migrate very close to chondroitin sulfate standards. Finally, the disaccharides produced by digestion of these radioactively labeled glycosaminoglycans with chondroitinases AC and ABC were identified as Δdi-4S and Δdi-6S, as expected for chondroitin 4- and 6-sulfate. By using incorporation of radioactive precursors into chondroitin sulfates in vitro, we than determined which tissues synthesize the vitreous humor in the developing eye. Late in development, on Day 12–13, the isolated vitreous is very active in chondroitin sulfate synthesis, while the neural retina, the lens, and the pecten are less active and produce a high proportion of enzyme-resistant GAG. The eye tissues isolated from embryos labeled in ovo retain similar amounts and types of glycosaminoglycans, indicating that cells within the vitreous synthesize the vitreous humor glycosaminoglycans at this time. Earlier in development, from Days 6 to 8, the isolated vitreous incorporates very low levels of radioactivity into GAG, but the neural retina incorporates high levels of radioactivity into chondroitin sulfate. When the embryos are labeled in ovo and the same tissues are isolated following incorporation, the vitreous retains more radioactive chondroitin sulfate than does the neural retina. Thus, the vitreous humour glycosaminoglycan is initially synthesized by the neural retina and is secreted into the vitreous space.  相似文献   

7.
Normal mammalian vitreous humor maintains its avascularity after regression of hyaloid vessels. Neovascularization in adults is only detected under pathological conditions which suggests that antiangiogenic factors are present in the vitreous humor. To elucidate the mechanism of vitreal angiogenic inhibition, we investigated the effect of vitreous humor on cultured vascular endothelial cells. When bovine aortic endothelial cells were cultured in the presence of bovine vitreous humor in medium, a decrease in cell viability was observed within 24 h. Ascorbic acid from vitreous humor has been identified as a cell death inducing factor with high performance liquid chromatography (HPLC) and molecular mass analysis. Ascorbic acid reduced endothelial cell viability at concentrations normally present in vitreous humor. This effect was completely inhibited by antioxidants, N-acetylcysteine and catalase. Amongst the ascorbic acid derivatives tested, ascorbic acid 2-phosphate did not induce cell death, suggesting that the production of ascorbyl radical is required for induction of cell death. Furthermore, capillary formation in three-dimensional collagen gel cultures characteristic of vascular endothelial cells were disrupted in the presence of ascorbic acid. Since ascorbic acid is highly concentrated in ocular tissues, especially in vitreous humor, it may function as a neovascularization inhibitor.  相似文献   

8.
Summary Most measures of avian visual performance are carried out on commonly available domestic species such as the chicken, and most of the data on avian induced refractive error deals with chickens. Raptors are predatory birds in which good visual resolving ability is particularly important. Behavioral studies indicate that the eyes of raptors have two to three times the resolving ability of the human eye. The domestic chicken is precocial at hatching whereas most raptors are semi-altricial. This study was an effort to determine if the effect of early visual deprivation on the refractive development of the chicken eye can be reproduced in the American kestrel, a species which is not domesticated and in which the need for acute vision is particularly important.Visual deprivation was achieved by unilaterally applying translucent plastic goggles over the eyes of kestrels two days after hatching. Refractive error was measured using a retinoscope and trial lenses. Ocular growth was monitored by A-scan ultrasonography, and frozen ocular sections of sacrificed birds. The effect of the experimental manipulation on the contralateral control eye and body weight was evaluated each day over a 42-day period. The goggles did not significantly affect the normal changes in body weight or the normal pattern of ocular growth and refractive development in the untreated eyes. An analysis of the refractive state changes as a result of form deprivation was made each week for 6 weeks after hatching on both the treated and untreated eyes in a separate group of experimental birds. Visual form deprivation caused a significant myopic shift in refractive error and a significant increase in the vitreous chamber depth in the treated eyes at 3 and 6 weeks of age. However, the amount of myopia produced is much less than that induced in chicks, and in certain cases hyperopia is produced. The kestrels recover from myopia and hyperopia within 10 days of goggle removal, after 3 to 4 weeks of deprivation.This study is the first indication that chickens may not be a representative bird model for studying form deprivation myopia. First, myopia is not always produced in kestrels in response to form deprivation. Second, kestrels are severely myopic at hatching and therefore, the direction of emmetropization is opposite to that found in hatchling chicks.  相似文献   

9.
The nature and origin of the proteins of the vitreous humor were examined in chickens during embryonic and early posthatching stages. The major proteins of the vitreous humor were similar in electrophoretic mobility to plasma proteins at all ages examined. Earlier studies from our laboratory and experiments described below showed that plasma proteins continuously entered and left the eye throughout its development. From these data it was concluded that the majority of vitreous-humor proteins were derived from the blood. The protein concentration of the vitreous humor was 13% of that of the plasma from embryonic Days 6 through 15 (E6 through E15). After E15, the relative protein concentration in the vitreous humor declined with respect to the plasma and reached 4% of the plasma protein concentration at hatching. Several possibilities were considered to account for how proteins can rapidly enter and leave the eye, yet maintain a steady-state concentration in the vitreous humor that is less than one-seventh of that in the blood.  相似文献   

10.
Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous.   总被引:5,自引:0,他引:5  
B Lee  M Litt  G Buchsbaum 《Biorheology》1992,29(5-6):521-533
  相似文献   

11.
Glycosaminoglycans (GAGs) play an important role in stabilizing the gel state of eye vitreous humour. In this study, the composition of GAGs present in bovine eye vitreous was characterized through disaccharide analysis by liquid chromatography-mass spectrometry. The interaction of GAGs with collagen type II was assessed using surface plasmon resonance (SPR). The percentage of hyaluronic acid (HA), chondroitin sulfate (CS) and heparan sulfate (HS), of total GAG, were 96.2%, 3.5% and 0.3%, respectively. The disaccharide composition of CS consisted of 4S (49%), 0S (38%) 6S (12%), 2S6S (1.5%) and 2S4S (0.3%). The disaccharide composition of HS consisted of 0S (80%), NS2S (7%), NS (7%), 6S (4%), NS6S (2%), and TriS, 2S and 4S6S (each at 0.1%). The average molecular weights of CS and HS were 148 kDa and 204 kDa, respectively. SPR reveals that collagen type II binds to heparin (primarily composed of TriS) with a binding affinity (K D) of 755 nM and interacts with other GAGs, including CSB and CSE. Both bovine vitreous CS and HS interact with collagen type II, with vitreous HS showing a higher binding affinity.  相似文献   

12.
While the mouse retina has emerged as an important genetic model for inherited retinal disease, the mouse vitreous remains to be explored. The vitreous is a highly aqueous extracellular matrix overlying the retina where intraocular as well as extraocular proteins accumulate during disease.1-3 Abnormal interactions between vitreous and retina underlie several diseases such as retinal detachment, proliferative diabetic retinopathy, uveitis, and proliferative vitreoretinopathy.1,4 The relative mouse vitreous volume is significantly smaller than the human vitreous (Figure 1), since the mouse lens occupies nearly 75% of its eye.5 This has made biochemical studies of mouse vitreous challenging. In this video article, we present a technique to dissect and isolate the mouse vitreous from the retina, which will allow use of transgenic mouse models to more clearly define the role of this extracellular matrix in the development of vitreoretinal diseases.  相似文献   

13.
Factors in vitreous humour which regulate prostaglandin production were investigated using cultured rabbit chorioretinal fibroblasts. These cells produced predominantly prostaglandin E2, 6-ketoprostaglandin F1 alpha, a compound likely to be a metabolite of prostaglandin E2 and 5-hydroxyeicosatetraenoic acid. The synthesis of 6-ketoprostaglandin F1 alpha was nearly completely inhibited by the cyclooxygenase inhibitor aspirin and partially inhibited by 10(-6) M dexamethasone (49%) and 10(-5) M forskolin (68%). Addition of 10% rabbit vitreous humour to subconfluent cells maintained in Dulbecco's modified Eagle's medium plus 1% fetal bovine serum resulted in stimulation of 6-ketoprostaglandin F1 alpha production by as much as 246% as measured by radioimmunoassay. Chorioretinal fibroblasts labelled by [3H]arachidonic acid incorporation into cellular phospholipids synthesised greater amounts of all labelled arachidonic acid metabolites in response to vitreous humour. It was concluded, therefore, that there are factors present in vitreous humour of molecular weight above 10 kDa which are capable of stimulating cellular cyclooxygenase activity. Confluent cells also responded to a factor(s) present in vitreous humour. The fraction of less than 10 kDa inhibited 6-ketoprostaglandin F1 alpha production by 50% when used at a concentration of 10%. Furthermore, 6-ketoprostaglandin F1 alpha production in confluent cells (but not subconfluent cells) was inhibited to 40% of control levels by vitamin C at a concentration of 1 mg/100 ml. The latter result points to an inhibitory role for vitamin C in vitreous humour. We conclude, therefore, that vitreous humour contains factors important for the regulation of prostaglandin metabolism in the eye.  相似文献   

14.
Vitrectomy is an ophthalmic microsurgical procedure that removes part or all of the vitreous humor from the eye. The procedure uses a vitreous cutter consisting of a narrow shaft with a small orifice at the end through which the humor is aspirated by an applied suction. An internal guillotine oscillates back and forth across the orifice to alter the local shear response of the humor. In this work, a computational study of the flow in a vitreous cutter is conducted in order to gain better understanding of the vitreous behavior and provide guidelines for a new vitreous cutter design. The flow of a Newtonian surrogate of vitreous in a two-dimensional analog geometry is investigated using a finite difference-based immersed boundary method with an algebraically formulated fractional-step method. A series of numerical experiments is performed to evaluate the impact of cutting rate, aspiration pressure, and opening/closing transition on the vitreous cutter flow rate and transorifice pressure variation during vitrectomy. The mean flow rate is observed to increase approximately linearly with aspiration pressure and also increase nearly linearly with duty cycle. A study of time-varying flow rate, velocity field, and vorticity illuminates the flow behavior during each phase of the cutting cycle and shows that the opening/closing transition plays a key role in improving the vitreous cutter's efficacy and minimizing the potential damage to surrounding tissue. The numerical results show similar trend in flow rate as previous in vitro experiments using water and balanced saline solution and also demonstrate that high duty cycle and slow opening/closing phases lead to high flow rate and minor disturbance to the eye during vitrectomy, which are the design requirements of an ideal vitreous cutter.  相似文献   

15.
The metabolism of naphthalene and its toxic effect on the eye   总被引:8,自引:5,他引:3       下载免费PDF全文
1. Naphthalene (1g./kg.) was fed daily by stomach tube to rabbits. 2. In more than half of the rabbits opacities in the lens and degeneration of the retina were visible in vivo. 3. Dissection of eye tissues revealed some or all of the following changes: a browning of the lens and eye humours, blue fluorescence of the eye humours and crystals in the retina and vitreous body. 4. The ascorbic acid concentration of the eye humours was decreased. 5. Some metabolites of naphthalene [1,2-dihydro-1,2-dihydroxynaphthalene, 2-hydroxy-1-naphthyl sulphate and (1,2-dihydro-2-hydroxy-1-naphthyl glucosid)uronic acid] are converted enzymically by the tissues of the eye into 1,2-dihydroxynaphthalene. 6. Changes in the eye are consistent with 1,2-dihydroxynaphthalene's being the primary toxic agent. The properties and reactions of this substance are described. 7. 1,2-Dihydroxynaphthalene is readily autoxidizable in neutral solution to form the yellow 1,2-naphthaquinone and hydrogen peroxide. This oxidation is reversed by ascorbate. 8. Ascorbate is oxidized catalytically by 1,2-naphthaquinone. This may account for the disappearance of ascorbate from the aqueous and vitreous humours of the eye after naphthalene feeding. It may also account for the appearance of crystals of calcium oxalate in the eye. 9. The brown colour of the lens of the naphthalene-fed rabbit is due to presence of naphthaquinone–protein compounds.  相似文献   

16.
Transdifferentiation of ocular tissues in larval Xenopus laevis   总被引:4,自引:0,他引:4  
Transdifferentiation phenomena offer a useful opportunity to study experimentally the mechanisms on which cell phenotypic stability depends. The capacities of vertebrate eye tissues to reprogram cell differentiation are well known in avian and mammalian embryos, and in larval and adult newt. From research into the capacity of anuran eye tissues to reprogram differentiation into a new pathway, considerable data have accumulated concerning the transdifferentiative capacities of eye tissues in larval Xenopus laevis. This work reviews the data concerning the transdifferentiative phenomena of eye tissues in that species and, based on these, aims to establish the extent of our knowledge about the mechanism controlling these processes. In larval Xenopus laevis the outer cornea can regenerate a lens by a lens-transdifferentiation process triggered and substained by a factor(s), probably of a protein nature, produced by the neural retina. In a normal eye phenotypic stability of the outer cornea is guaranteed by the presence of the inner cornea and lens, which prevent the spread of retinal factor(s). The stimulus for lens transdifferentiation of the outer cornea can be supplied by other tissues as well, but this capacity is not widely distributed. The iris and retinal pigmented epithelium can transdifferentiate into neural retina if isolated from the surrounding tissues and implanted in the vitreous chamber. As for lens transdifferentiation of the outer cornea, retinal transdifferentiation of the iris can be stimulated by certain nonocular tissues as well.  相似文献   

17.
In larval X. laevis the capacity to regenerate a lens under the influence of inductive factors present in the vitreous chamber is restricted to the outer cornea and pericorneal epidermis (Lentogenic Area, LA). However, in early embryos, the whole ectoderm is capable of responding to inductive factors of the larval eye forming lens cells. In a previous paper, Cannata et al. (2003) demonstrated that the persistence of lens-forming competence in the LA is the result of early signals causing lens-forming bias in the presumptive LA and of late signals from the eye causing cornea development. This paper analyzes 1) the decrease of the lens-forming capacity in ectodermal regions both near LA (head epidermis) and far from LA (flank epidermis) during development, 2) the capacity of the head epidermis and flank epidermis to respond to lens-competence promoting factors released by an eye transplanted below these epidermal regions, and 3) the eye components responsible for the promoting effect of the transplanted eye. Results were obtained by implanting fragments of ectoderm or epidermis into the vitreous chamber of host tadpoles and by evaluating the percentage of implants positive to a monoclonal antibody anti-lens. These results demonstrated that the lens-forming competence in the flank region is lost at the embryonic stage 30/31 and is weakly restored by eye transplantation; however, lens-forming competence in the head region is lost at the larval stage 48 and is strongly restored by eye transplantation. The authors hypothesize that during development the head ectoderm outside the LA is attained by low levels of the same signals that attain the LA and that these signals are responsible for the maintenance of lens-forming competence in the cornea and pericorneal epidermis of the larva. In this hypothesis, low levels of these signals slacken the decrease of the lens-forming competence in the head ectoderm and make the head epidermis much more responsive than the flank epidermis to the effect of promoting factors released by a transplanted eye. Results obtained after transplantation of eyes deprived of some components indicate that the lens and the retina are the main source of these promoting factors. The immunohistochemical detection of the FGFR-2 (bek variant) protein in the epidermis of stage 53 larvae submitted to eye transplantation at stage 46 showed that the eye transplantation increased the level of FGFR-2 protein in the head epidermis but not in the flank epidermis, indicating that the lens-forming competence in X. laevis epidermis could be related to the presence of an activated FGF receptor system in the responding tissue.  相似文献   

18.
In this study, the distributions of intravitreal injected drugs in post-vitrectomy human eyes, which are subjected to periodic saccade movements, are investigated. The computational model for the vitreous cavity of human eye is a sphere with one side truncated by the eye lens. A dynamic mesh technique was used to model the eye motion and the unsteady 3-D forms of continuity; Navier–Stokes and concentration transport of drug equations were solved numerically. The numerical model was validated earlier for the vitreous liquid flow field. The predicted drug concentration for idealized geometry was compared with the available analytic solution and excellent agreement was observed. The validated computer model was then used to simulate a real vitreous cavity filled with Balanced Salt Solution or aqueous humor as a vitreous substitute in order to obtain distribution of drugs in the post-vitrectomy eyes or liquefied vitreous. Additionally, effects of locations of drug injection, drug diffusion coefficients and saccade amplitude on the drug distribution and its uniformity were investigated. Although the earlier findings in the literature reported a day or a week as a needed time for drug uniform distribution in the vitreous substitutes, the present work depicts that saccade movements augment the transport of the drug in a way that the uniformity of the drug distribution can be achieved in a matter of minutes. Furthermore, in a vitreous cavity subjected to the saccade movements, the diffusion coefficient of drugs does not significantly affect their distribution after a few minutes. Even the injection location does not matter as uniform distribution is achieved after some time.  相似文献   

19.
The aim of this work was to develop a quick method for analysis of macromolecules of the extracellular matrix. Of great interest are soluble components of the extracellular matrix, in particular, carrier proteins, whose variation dynamics can characterize the studied tissue in its development, adult stage, and aging. We suggest the method of analysis of the extracellular matrix to reveal the presence of albumin and collagen by using an anionic cyanine dye as a spectral and fluorescence probe. The method was applied for the analysis of the human vitreous body in the course of its development. Albumin was detected by the appearance of the trans monomer absorption and fluorescence bands in the dye spectra, and collagen was detected by the absorption and fluorescence bands of J aggregates. Hyaluronic acid present in the vitreous body does not interfere with the results of the analysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis confirmed the presence of albumin in the vitreous body. We suppose that albumin as a protein carrying biologically active macromolecules plays an important role in the processes of differentiation and functional establishment of ocular tissues in the course of their prenatal development.  相似文献   

20.
Coordinated rheological and biochemical measurements provide the linear and nonlinear mechanical properties of the vitreous and demonstrate the structural role of hyaluronic acid. "Cleated" tools are used to overcome wall slip and avoid tissue compression during measurements of the dynamic moduli of fresh porcine and bovine vitreous. Shear moduli decreased five-fold from initial to steady-state values in the first hour after dissection. Steady-state values (porcine: G'=2.8+/-0.9Pa, n=9; bovine: G'=7.0+/-2.0Pa, n=17) are significantly greater than previously reported. The decrease in modulus after removal from the eye correlates with a decrease in mass: even in the absence of external driving forces, porcine vitreous expels approximately 5% of its mass within 5min and continues to decay to a steady-state mass approximately 10% lower than its initial mass. The expelled fluid has a substantial hyaluronan concentration, but very low protein content. These results indicate that the vitreous network is under tension at its native volume and its high initial modulus results from this state of tension. We hypothesize that hyaluronan plays a role in sustaining the "internal tension" by Donnan swelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号