首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine if thermophilic fungi exist in the mycoflora of man and in the aeroflora of his environment.Humicola lanuginosa andHumicola grisea were isolated from 5 of 55 samples of outside air. Three thousand cultures were taken from the nasal mucosae, skin surfaces and recta of 570 children. Cultures were incubated at 50°C. Thermophilic fungi were isolated from 6 of 287 children receiving immunosuppressive therapy for malignancies and from 1 of 283 normal children.H. lanuginosa was recovered from the skin of one, the rectum of one and the nasal mucosae of three patients.Mucor pusillus was isolated from the nasopharynges of two patients.Further studies are now indicated to determine the pathogenicity of these organisms with respect to tissue invasive disease, antigenicity and metabolite toxicity.Supported by General Research Support Grant RR-05584 from National Institutes of Health; Cancer Research Center Grant CA-08480 and Training Grant CA-05176 from the National Cancer Institute, National Institutes of Health and by ALSAC.  相似文献   

2.
In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.  相似文献   

3.

Background  

Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods.  相似文献   

4.
Pseudomonas aeruginosa clone C strains, which chronically colonize the lungs of cystic fibrosis patients reorganize their genome structure. In this study, a novel member of the IS3 subfamily of IS elements, ISPa20, was detected which was specific for clone C subclone C13 strains. ISPa20, which was present in high copy number, mediated events of genomic reorganization. ISPa20 was inserted into P. aeruginosa backbone genes leading to adaptation to the cystic fibrosis lung habitat and into DNA acquired through horizontal gene transfer. Further on, large chromosomal inversions were mediated by ISPa20. In contrast to strains of other subclonal linages high rates of genomic rearrangements of subclone C13 strains were observed in vitro. The acquisition of mobile elements by P. aeruginosa clone C strains in the lungs of cystic fibrosis patients supports the chronic colonization by insertional mutagenesis and chromosome restructuring leading to microevolution within clone C that reflects macroevolution observed on the species level.  相似文献   

5.
Glutathione (GSH) plays important roles in pulmonary diseases, and inhaled GSH therapy has been used to treat cystic fibrosis (CF) patients in clinical trials. The results in this report revealed that GSH altered the sensitivity of Pseudomonas aeruginosa to different antibiotics through pathways unrelated to the oxidative stress as generally perceived. In addition, GSH and its oxidized form inhibited the growth of P. aeruginosa. Supported by the National Natural Science Foundation of China (Grant Nos. 30870097 and 30611120520)  相似文献   

6.
The lungs of patients with cystic fibrosis become chronically infected with the bacterium Pseudomonas aeruginosa, which heralds progressive lung damage and a decline in health. Iron is a crucial micronutrient for bacteria and its acquisition is a key factor in infection. P. aeruginosa can acquire this element by secreting pyoverdine and pyochelin, iron-chelating compounds (siderophores) that scavenge iron and deliver it to the bacteria. Siderophore-mediated iron uptake is generally considered a key factor in the ability of P. aeruginosa to cause infection. We have investigated the amounts of pyoverdine in 148 sputum samples from 36 cystic fibrosis patients (30 infected with P. aeruginosa and 6 as negative controls). Pyoverdine was present in 93 samples in concentrations between 0.30 and 51 μM (median 4.6 μM) and there was a strong association between the amount of pyoverdine and the number of P. aeruginosa present. However, pyoverdine was not present, or below the limits of detection (~0.3 μM), in 21 sputum samples that contained P. aeruginosa. Pyochelin was also absent, or below the limits of detection (~1 μM), in samples from P. aeruginosa-infected patients with little or no detectable pyoverdine. Our data show that pyoverdine is an important iron-scavenging molecule for P. aeruginosa in many cystic fibrosis patients, but other P. aeruginosa iron-uptake systems must be active in some patients to satisfy the bacterial need for iron.  相似文献   

7.
Early acquisition of Pseudomonas aeruginosa is associated with a poorer prognosis in patients with cystic fibrosis. We investigated whether polymorphisms in CD14, the lipopolysaccharide receptor, increase the risk of early infection. Forty-five children with cystic fibrosis were investigated with annual bronchoalveolar lavage (BAL) and plasma sCD14 levels. Plasma sCD14 levels were significantly lower in children from whom P.aeruginosa was subsequently isolated (492.75 μg/ml vs. 1339.43 μg/ml, p = 0.018). Those with the CD14 -159CC genotype had a significantly increased risk of early infection with P.aeruginosa suggesting that CD14 C-159T plays a role in determining the risk of early infection with P.aeruginosa.  相似文献   

8.
For many years, device-associated infections and particularly device-associated nosocomial infections have been of considerable concern. Recently, this concern was heightened as a result of increased antibiotic resistance among the common causal agents of nosocomial infections, the appearance of new strains which are intrinsically resistant to the antibiotics of choice, and the emerging understanding of the role biofilms may play in device-associated infections and the development of increased antibiotic resistance. Pseudomonas aeruginosa and Candida albicans are consistently identified as some of the more important agents of nosocomial infections. In light of the recent information regarding device-associated nosocomial infections, understanding the nature of P. aeruginosa and C. albicans infections is increasingly important. These two microorganisms demonstrate: (1) an ability to form biofilms on the majority of devices employed currently, (2) increased resistance/tolerance to antibiotics when associated with biofilms, (3) documented infections noted for virtually all indwelling devices, (4) opportunistic pathogenicity, and (5) persistence in the hospital environment. To these five demonstrated characteristics, two additional areas of interest are emerging: (a) the as yet unclear relationship of these two microorganisms to those species of highly resistant Pseudomonas spp and Candida spp that are of increasing concern with device-related infections, and (b) the recent research showing the dynamic interaction of P. aeruginosa and C. albicans in patients with cystic fibrosis. An understanding of these two opportunistic pathogens in the context of their ecosystems/biofilms also has significant potential for the development of novel and effective approaches for the control and treatment of device-associated infections.  相似文献   

9.
Pseudomonas aeruginosa and Candida albicans are disparate microbial species, but both are known to be opportunistic pathogens frequently associated with nosocomial infections. The aim of this study was to provide a better understanding of the interactions between these microorganisms in dual-species biofilms. Several bacteriophage-resistant P. aeruginosa phenotypes have been isolated and were used in dual-species mixed-biofilm studies. Twenty-four and 48 h mixed-biofilms were formed using the isolated phenotypes of phage-resistant P. aeruginosa and these were compared with similar experiments using other P. aeruginosa strains with a defined lipopolysaccharide (LPS) deficiency based on chromosomal knockout of specific LPS biosynthetic genes. Overall, the results showed that the variants of phage-resistant P. aeruginosa and LPS mutants were both less effective in inhibiting the growth of C. albicans in mixed-biofilms compared to the wild-type strains of P. aeruginosa. Conversely, the proliferation of P. aeruginosa was not influenced by the presence of C. albicans. In conclusion, the ability of strains of P. aeruginosa to inhibit the formation of a biofilm of C. albicans appears to be correlated with the LPS chain lengths of phenotypes of P. aeruginosa, suggesting that LPS has a suppressive effect on the growth of C. albicans.  相似文献   

10.
Polymicrobial bronchopulmonary infections in cystic fibrosis (CF) cause progressive lung damage and death. Although the arrival of Pseudomonas aeruginosa often heralds a more rapid rate of pulmonary decline, there is significant inter‐individual variation in the rate of decline, the causes of which remain poorly understood. By coupling culture‐independent methods with ecological analyses, we discovered correlations between bacterial community profiles and clinical disease markers in respiratory tracts of 45 children with CF. Bacterial community complexity was inversely correlated with patient age, presence of P. aeruginosa and antibiotic exposure, and was related to CF genotype. Strikingly, bacterial communities lacking P. aeruginosa were much more similar to each other than were those containing P. aeruginosa, regardless of antibiotic exposure. This suggests that community composition might be a better predictor of disease progression than the presence of P. aeruginosa alone and deserves further study.  相似文献   

11.

Background  

Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF). To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells.  相似文献   

12.
Pseudomonas aeruginosa can establish life-long chronic infection in patients with cystic fibrosis by generating genetic loss-of-function mutations, which enhance fitness of the bacterium in the airways. However, the precise role of the pathoadaptive mutations in persistence in chronic airways infection remains largely unknown. Here we demonstrate that pyocyanin, a well-described P. aeruginosa virulence factor that plays an important role in the initial infection, promotes autophagy in bronchial epithelial cells. Disruption of phzM, which is required for pyocyanin biosynthesis, leads to a significant reduction in autophagy in Beas-2B cells and lung tissues. Pyocyanin-induced autophagy is mediated by the EIF2AK4/GCN2-EIF2S1/eIF2α-ATF4 pathway. Interestingly, rats infected with the phzMΔ mutant strain have high mortality rate and numbers of colony-forming units, compared to those infected with wild-type (WT) P. aeruginosa PA14 strain, during chronic P. aeruginosa infection. In addition, the phzMΔ mutant strain induces more extensive alveolar wall thickening than the WT strain in the pulmonary airways of rats. As autophagy plays an essential role in suppressing bacterial burden, our findings provide a detailed understanding of why reduction of pyocyanin production in P. aeruginosa in chronic airways infections has been associated with better host adaptation and worse outcomes in cystic fibrosis.  相似文献   

13.

Background  

Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-person transmissible strains have been identified in CF clinics worldwide. The molecular basis for transmissibility and colonization of the CF lung remains poorly understood.  相似文献   

14.
The adherence to hamster tracheal epithelium, of mucoid and nonmucoid clinical isolates ofPseudomonas aeruginosa from cystic fibrosis patients, was studied using tracheal organ cultures. Tracheal cultures were infected with 107 colony-forming units per ml of either mucoid or nonmucoid clinical isolates ofP aeruginosa. The tracheal explants were rinsed at various time intervals to remove nonadherent bacteria, fixed, and prepared for transmission-and scanning-electron microscopy. Mucoid isolates were seen adhering to the ciliated epithelium as early as 4 h after initiation of infection, whereas nonmucoid isolates were only observed adhering at 6 to 8 h after infection. Mucoid organisms were found as clusters of bacteria embedded in an extensive extracellular matrix. The nonmucoid isolates were generally found as single organisms with no evidence of an extracellular matrix. These results suggest that the prevalence of mucoid isolates ofP. aeruginosa in cystic fibrosis may be due to adherent properties of the mucoid organism.  相似文献   

15.
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.  相似文献   

16.
Aim: The ability of enzymatically synthesized lauroyl glucose to disrupt fungal (Candida albicans, Candida lipolytica) and bacterial (Pseudomonas aeruginosa PAO1, Pseudomonas aureofaciens) biofilms was investigated. Methods and Results: Preformed biofilms of C. albicans and C. lipolytica in polystyrene microtitre plates were disrupted upto 45% and 65%, respectively, while P. aeruginosa and P. aureofaciens biofilms were disrupted by 51% and 57%. Precoating of the microtitre wells with lauroyl glucose affected cell attachment and biofilm growth of all the cultures to a lesser extent. With C. albicans and C. lipolytica, there was 11% and 32% decrease in the development of biofilms, respectively. With P. aeruginosa and P. aureofaciens, the reduction was 21% and 12% after 48 h. Lauroyl glucose effectively inhibited the formation of biofilms on glass slide surfaces when added along with the inoculum. Analysis by confocal laser scanning microscopy showed that the growth of the biofilms was lesser as compared with the control experiments. Lauroyl glucose displayed minimum inhibitory concentration values >500 μg ml?1 for the test cultures and was comparable to that obtained with acetyl salicylate. Conclusion: Lauroyl glucose reduces biofilm growth of all the four test cultures on polystyrene and glass surfaces. Significance and Impact of the Study: This report is a novel application of the enzymatically synthesized, environmental‐friendly nonionic surfactant.  相似文献   

17.
Most hematogenous candidiasis originates from endogeneous host flora. Fungal flora of gastrointestinal system are important source of infection especially in immunosupressed patients. The purpose of this study was to investigate the fecal fungal flora of pediatric patients with hematologic malignancy or disorders and to compare the results with healthy volunteers. For this purpose, fungal etiological agents were investigated retrospectively in stool samples of 80 patients followed in Bone marrow transplantation and Hematology–Oncology units. The diagnosis of patients were as follows: 26 acute myelogeneous leukemia, 19 acute lymphocytic leukemia, 5 lymphoma, 3 chronic myelogeneous leukemia, 2 solid tumor, 4 neuroblastoma and 21 hematologic disorders. In patients, totally 102 fungal growth was detected and 42 (41.2%) C. albicans and 51 (50%) non-albicans Candida species and 9 (8.8%) yeast other than Candida and mould was isolated. The results were compared prospectively with growth in stool samples of 61 healthy children. C. albicans was detected in 16 (43.2%) and non-albicans Candida species in 15 (40.5%) and yeasts other than Candida and mould in 6 (16.2%) of 37 fungal growth in controls. Non-albicans Candida species growth was found significantly higher and C. glabrata was more prevelant in patients than in controls (p < 0.001).  相似文献   

18.
Patients with cystic fibrosis often have chronic and ultimately lethal pulmonary infections with Pseudomonas aeruginosa. In order to understand why these bacteria resist pulmonary clearance, we have investigated the interaction of P. aeruginosa and phagocytic cells. In an earlier study we reported that sub-lytic concentrations of two glycolipids produced by P. aeruginosa (the mono- and dirhamnolipids) caused structural changes in human monocyte-derived macrophages, and at lower concentrations inhibited the phagocytosis of Staphylococcus epidermidis by these cells. In the present study we demonstrate that rhamnolipids also inhibit the in vitro phagocytosis of both P. aeruginosa and Saccharomyces cerevisiae by thioglycollate-elicited mouse peritoneal macrophages. Using lucifer yellow to label the lysosomal compartments of macrophages, we determined that rhamnolipids interfere with the internalization of attached particles and reduce the level of phagosome-lysosome fusion of internalized targets within macrophages. We also demonstrate that physiologically relevant concentrations of rhamnolipids injected intratracheally into rat lungs inhibited the response of alveolar macrophages to a challenge of zymosan particles in vivo. These studies further demonstrate the profound inhibitory effects of P. aeruginosa rhamnolipids on macrophage function and are consistent with our hypothesis that the in situ production of these rhamnolipids directly contributes to the persistence of this pathogen in cystic fibrosis patient lungs. Received: 15 December 1995 / Accepted: 22 January 1996  相似文献   

19.
In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.  相似文献   

20.

Background  

Pseudomonas aeruginosa is the major pathogen involved in the decline of lung function in cystic fibrosis (CF) patients. Early aggressive antibiotic therapy has been shown to be effective in preventing chronic colonization. Therefore, early detection is important and sensitive detection methods are warranted. In this study, we used a dilution series of P. aeruginosa positive sputa, diluted in a pool of P. aeruginosa negative sputa, all from CF patients - to mimick as closely as possible the sputa sent to routine laboratories - to compare the sensitivity of three culture techniques versus that of two conventional PCR formats and four real-time PCR formats, each targeting the P. aeruginosa oprL gene. In addition, we compared five DNA-extraction protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号