首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cranial and skeletal remains of modern humans, Homo sapiens, were discovered in the Kibish Formation in 1967 by a team from the Kenya National Museums directed by Richard Leakey. Omo I, from Kamoya's Hominid Site (KHS), consists of much of a skeleton, including most of the cranial vault, parts of the face and mandible, and many postcranial elements. Omo II, from Paul's Hominid Site (PHS), is a virtually complete calvaria. Only a limited fauna and a few stone artifacts attributed to the Middle Stone Age were recovered in conjunction with the fossil hominids. The available dating techniques suggested a very early age, over 100 ka, for Member I, from which the Omo I and Omo II fossils were recovered. However, in subsequent decades, the reliability of the dates and the provenance of the Kibish hominids were repeatedly questioned. The papers in this volume provide a detailed stratigraphic analysis of the Kibish Formation and a series of new radiometric dates that indicate an age of 196 +/- 2 ka for Member I and 104 +/- 1 for Member III, confirming the antiquity of the lower parts of the Kibish Formation and, in turn, the fossils from Member I. Studies of the postcranial remains of Omo I indicate an overall modern human morphology with a number of primitive features. Studies of an extensive lithic record from Members I and III indicate a Middle Stone Age technology comparable to assemblages of similar age elsewhere in Ethiopia. Studies of the mammalian, avian, and fish faunas indicate overall similarities to those found in the region today, with a few distinctive differences.  相似文献   

2.
Global change during the late Pliocene was manifested in declining temperatures, increased amplitude of climate cycles, and shifts in the periodicity of orbital climate forcing. Linking these changes to the evolution of African continental faunas and to hominin evolution requires well-documented fossil evidence that can be examined through substantial periods of time. The Omo sequence of southern Ethiopia provides such a database, and we use it to analyze change in the abundances of mammal taxa at different levels of temporal and taxonomic resolution between 4 and 2 Ma. This study provides new evidence for shifts through time in the ecological dominance of suids, cercopithecids, and bovids, and for a trend from more forested to more open woodland habitats. Superimposed on these long-term trends are two episodes of faunal change, one involving a marked shift in the abundances of different taxa at about 2.8+/-0.1 Ma, and the second the transition at 2.5 Ma from a 200-ka interval of faunal stability to marked variability over intervals of about 100 ka. The first appearance of Homo, the earliest artefacts, and the extinction of non-robust Australopithecus in the Omo sequence coincide in time with the beginning of this period of high variability. We conclude that climate change caused significant shifts in vegetation in the Omo paleo-ecosystem and is a plausible explanation for the gradual ecological change from forest to open woodland between 3.4 and 2.0 Ma, the faunal shift at 2.8 +/-0.1 Ma, and the change in the tempo of faunal variability of 2.5 Ma. Climate forcing in the late Pliocene is more clearly indicated by population shifts within the Omo mammal community than by marked turnover at the species level.  相似文献   

3.
Hominin specimens Omo I and Omo II from Member I of the Kibish Formation, Ethiopia are attributed to early Homo sapiens, and an age near 196 ka has been suggested for them. The KHS Tuff, within Member II of the Kibish Formation has not been directly dated at the site, but it is believed to have been deposited at or near the time of formation of sapropel S6 in the Mediterranean Sea. Electron microprobe analyses suggest that the KHS Tuff correlates with the WAVT (Waidedo Vitric Tuff) at Herto, Gona, and Konso (sample TA-55), and with Unit D at Kulkuletti in the Ethiopian Rift Valley. Konso sample TA-55 is older than 154 ka, and Unit D at Kulkuletti is dated at 183 ka. These correlations and ages provide strong support for the age originally suggested for the hominin remains Omo I and Omo II, and for correlation of times of deposition in the Kibish region with formation of sapropels in the Mediterranean Sea. The Aliyo Tuff in Member III of the Kibish Formation is dated at 104 ka, and correlates with Gademotta Unit 15 in the Ethiopian Rift Valley.  相似文献   

4.
Detailed stratigraphic analysis of the Omo I and Omo II fossil localities confirms both the relational and sequential context reported by Butzer in 1969. The two fossils derive from approximately the same level within upper Member I of the Kibish Formation. Additional features of the local stratigraphic sequences indicate a complex history of depositional events, minor erosional surfaces, and weak soil formation throughout upper Member I.  相似文献   

5.
Three cervical vertebrae of a large primate have been identified in the revision of the faunal assemblage collected during the late '70s from fissure fillings in the area known as Pirro Nord in southern Italy. By size the three vertebrae are comparable to the large fossil species Theropithecus oswaldi, however we prefer here to attribute the remains to Theropithecus sp. The Pirro Nord Theropithecus represents the second finding outside of Africa of this genus in association with Megantereon whitei, after the site of 'Ubeidiya. The biochronology of Pirro Nord faunal assemblage demonstrates that the arrival into Europe of Theropithecus occurred earlier than thought: in the range of approx 1.6-1.3 Ma. The identification of an European "African assemblage" (Theropithecus associated with Megantereon whitei) has consequences for interpretation of an "out of Africa" (genus Homo) event around the Plio-Pleistocene transition.  相似文献   

6.
The Kibish Formation in southwestern Ethiopia, with an aggregate thickness of ~105m, consists of lacustrine, marginal lacustrine, and deltaic deposits. It is divided into four members numbered I to IV on the basis of erosion surfaces (disconformities) between the strata of each member. It overlies the Mursi and Nkalabong formations, the latter of which is here shown to correlate with the Shungura Formation. Tephra layers in each member allow for secure correlation between geographically separated sections on the basis of the composition of their volcanic glass. Members I, III, and IV of the Kibish Formation appear to have been deposited at the same times as sapropels S7 (197ka), S4 (104ka), and S1 (8ka) in the eastern Mediterranean Sea, respectively. We correlate the KHS Tuff of the Kibish Formation with a >154-kyr-old unnamed tuff in the Konso Formation. Tephra in Member IV may derive from Mount Wenchi, a volcano situated on the divide between the Omo and Blue Nile drainage basins. Thin-bedded sedimentary layers probably represent annual deposition reflecting rapid sedimentation (~30m/kyr) of parts of the formation. This conclusion is supported by variation in paleomagnetic inclination through a sequence of these layers at KHS. Two fossils of early Homo sapiens (Omo I and Omo II) derive from Member I. Their stratigraphic placement is confirmed by analysis of the KHS Tuff in the lower part of Member II at both fossil sites. The KHS Tuff lies above a disconformity, which itself lies above the fossils at both sites. (40)Ar/(39)Ar dates provide an estimated age of ~195kyr for these fossils. Omo III, a third fossil H. sapiens, probably also derives from Member I of the Kibish Formation and is of similar age. Hominin fossils from AHS, a new site, also derive from Member I. Hominin fossils from CHS can only be placed between 104ka and 10ka, the H. sapiens specimen from JHS is most likely 9-13kyr in age, and a partial skeleton of H. sapiens from Pelvic Corner is most likely ~6.6kyr in age.  相似文献   

7.
Thousands of vertebrate fossils have been recovered from the lower Omo River Valley, in southern Ethiopia, however, fishes have been poorly reported. Here we describe fossil fish remains deriving from the Shungura Formation, part of the Omo Group of deposits ranging in date from 1.8 to 3.4 my. Two new species are reported, Sindacharax omoensis (Characiformes) and Lates arambourgi (Perciformes), which suggest greater diversity of these genera than previously documented.  相似文献   

8.
This paper describes the excavation, stratigraphy, and lithic assemblages of Middle Stone Age sites from the Omo Kibish Formation (Lower Omo Valley, southwestern Ethiopia). Three sites were excavated, two in Kibish Member I (KHS and AHS) and one at the base of Member III (BNS). The assemblages are dominated by relatively high-quality raw materials procured as pebbles from local gravels. The principal modes of core preparation are radial/centripetal Levallois and discoidal. Retouched tools are rare. Foliate bifaces are present, as are larger tools, such as handaxes, picks, and lanceolates, but these are more common among surface finds than among excavated assemblages. Middle Stone Age assemblages shed light on the adaptations of the earliest-known Homo sapiens populations in Africa.  相似文献   

9.
Recent fieldwork in the Kibish Formation has expanded our knowledge of the geological, archaeological, and faunal context of the Omo I skeleton, the earliest known anatomically modern human. In the course of this fieldwork, several additional fragments of the skeleton were recovered: a middle manual phalanx, a distal manual phalanx, a right talus, a large and a small fragment of the left os coxae, a portion of the distal diaphysis of the right femur that conjoins with the distal epiphysis recovered in 1967, and a costal fragment. Some researchers have described the original postcranial fragments of Omo I as anatomically modern but have noted that a variety of aspects of the specimen's morphology depart from the usual anatomy of many recent populations. Reanalysis confirms this conclusion. Some of the unusual features in Omo I--a medially facing radial tuberosity, a laterally flaring facet on the talus for the lateral malleolus, and reduced dorsovolar curvature of the base of metacarpal I--are shared with Neandertals, some early modern humans from Skhul and Qafzeh, and some individuals from the European Gravettian, raising the possibility that Eurasian early modern humans inherited these features from an African predecessor rather than Neandertals. The fragment of the os coxae does not unambiguously diagnose Omo I's sex: the greater sciatic notch is intermediate in form, the acetabulum is large (male?), and a preauricular sulcus is present (female?). The preserved portion of the left humerus suggests that Omo I was quite tall, perhaps 178-182 cm, but the first metatarsal suggests a shorter stature of 162-173 cm. The morphology of the auricular surface of the os coxae suggests a young adult age.  相似文献   

10.
In addition to the new fragments of the Omo I skeleton, renewed fieldwork in the Kibish Formation along the lower reaches of the Omo River in southwestern Ethiopia has yielded new hominin finds from the Kibish Formation. The new finds include four heavily mineralized specimens: a partial left tibia and a fragment of a distal fibular diaphysis from Awoke's Hominid Site (AHS), a parietal fragment, and a portion of a juvenile occipital bone. The AHS tibia and fibula derive from Member I and are contemporaneous with Omo I and II. The other specimens derive from Chad's Hominid Site (CHS), and derive from either Member III or IV, which constrains their age between approximately 8.6 and approximately 104ka.  相似文献   

11.
Aim To quantify how mammal community structure relates to heterogeneity of vegetation for palaeoecological reconstructions, and to test whether historical or environmental factors are more important in structuring communities. Location Sixty‐three natural protected areas in Asia, Africa and South and Central America. Methods We defined faunal communities by allocating species to ecological guilds and calculating proportional representation within each guild. Vegetation heterogeneity for each natural protected area was calculated from satellite images. The relationship between these ecospaces was calculated using canonical correlations analysis, redundancy analysis and principal components analysis. We expected that large, herbivorous mammals would be most strongly correlated with open areas. Convergence was tested by independently eliminating the effects of geography and vegetation heterogeneity on the structure of the mammal communities. We expected that vegetation would more strongly structure communities than geographical position. Results We show that the guild structure of communities across habitats is significantly correlated with vegetation heterogeneity. The highest correlation was between small, scansorial‐arboreal secondary consumers and heavy tree cover. The first convergence analysis shows American communities distinguished from Asian and African communities; these latter communities show a remarkable convergence in structure. Historical factors only affected the continent whose mammals had experienced a long period of isolation. The second convergence analysis shows that almost all biomes have the same or very similar community structure regardless of continent. Main conclusions Communities from the same environments in different continents showed remarkable convergence. Communities from the same continents only converged when those continents shared a recent geological and biological history. These results suggest that historical and environmental factors are operating over different timescales. This study confirms that environmental reconstructions made on the basis of whole communities will accurately reflect the environment that the community lived in. However, reconstructions made for fossil sites in deep time need to take historical factors into consideration. Small, arboreal and scansorial secondary consumers show the strongest correlation with vegetation, correlating with continuous tree canopy cover. This relationship allows simple reconstructions of the amount of tree cover occurring in a landscape from the proportion of species from the community falling in this ecological guild.  相似文献   

12.
Gerard R. Case 《Geobios》1979,12(2):223-233
The recent recovery of additional fish remains from several fossil sites in Blaine County. Montana, allows us to add a new species of selachian and the occurrence of two genera of Chimaeriformes to the total vertebrate faunal assemblage of the Judith River Formation (Campanian).The new selachian genus is: Chiloscyllium missouriensis, a representative of the family: Orectolobidae.In association with the new orectolobid, there are representatives of the Chimaeroids: Ischyodus bifurcatusCase, and Elasmodus cf. greenoughiAgassiz.These new additions increase the total vertebratefaunnal assemblage of the Judith River Formation to twenty species.  相似文献   

13.
Macro-benthic faunal communities were compared between non-vegetation mudflat and Aegiceras corniculatum mangroves with different ages in Jiulongjiang Estuary, China. Faunal species number was highest in the mature mangrove and was higher in mangroves than in the mudflat, as snails and some crustaceans species were only collected in mangroves. The 5-year-old mangrove had the highest infaunal abundance and crustacean biomass. Snails had more abundance in the young mangroves. Uca arcuata was the dominant crab species in the non-vegetation mudflat and 5-year-old mangrove. Mangrove vegetation and sediment characteristics analyses indicated different habitats due to A. corniculatum mangrove restoration. However, overall poor correlations between faunal assemblage and sediment properties indicated that sediment properties were not the major factors influencing faunal distribution.  相似文献   

14.
Debate about the conservation value of secondary habitats has tended to focus on tropical forests, increasingly recognizing the role of secondary forests for biodiversity conservation. However, there remains a lack of information about the conservation value of secondary savannas. Here, we conducted a camera trap survey to assess the effect of secondary vegetation on large mammals in a Brazilian Cerrado protected area, using a single‐season occupancy framework to investigate the response of individual species (species‐level models) and of all species combined (community‐level models). In addition, we investigated the cost effectiveness of different sampling designs to monitor globally threatened species in the study area. At the community level, savanna that regenerated from eucalyptus plantation had similar occupancy estimate as old growth areas. At the species level, none of the ten species individually assessed seemed to respond to succession stage, with greater support for the effect of other covariates on occupancy, such as distance from water and vegetation physiognomy. These results demonstrate that secondary vegetation does not appear to negatively impact large mammals in the study area and suggest that, given a favorable context, Cerrado mammals can recolonize and use secondary savannas that regenerated from clearcut. However, our study area should be considered a best‐case scenario, as it retained key ecological attributes of high‐value secondary habitats. Our simulations showed that a sampling design with 60 camera trap sites surveyed during nine occasions is appropriate to monitor most globally threatened species in the study area, and could be a useful starting point for new monitoring initiatives in other Cerrado areas.  相似文献   

15.
The provenance and age of two Homo sapiens fossils (Omo I and Omo II) from the Kibish Formation in southern Ethiopia have been much debated. Here we confirm that Omo I and the somewhat more primitive-looking Omo II calvariae are from similar stratigraphic levels in Member I of the Kibish Formation. Based on (40)Ar/(39)Ar age measurements on alkali feldspar crystals from pumice clasts in the Nakaa'kire Tuff, a tuffaceous bed in Member I just below the hominin levels, we place an older limit of 198+/-14ka (weighted mean age=196+/-2ka) for the hominins. A younger limit of 104+/-7ka (weighted mean age=104+/-1ka) is provided by feldspars separated from pumice clasts in the Aliyo Tuff in Member III. Geological evidence indicates rapid deposition of each member of the Kibish Formation, concurrent with deposition of sapropels in the Mediterranean Sea. The (40)Ar/(39)Ar age measurements, together with correlations with sapropels, indicate that the hominin fossils are close in age to the older limit. Our preferred estimate of the age of the hominins is 195+/-5ka, making them the earliest well-dated anatomically modern humans yet described.  相似文献   

16.
Excavations at Liang Bua, a limestone cave on the island of Flores, East Indonesia, have yielded a well-dated archaeological and faunal sequence spanning the last 95 k.yr., major climatic fluctuations, and two human species - H. floresiensis from 95 to 17 k.yr.1, and modern humans from 11 k.yr. to the present. The faunal assemblage comprises well-preserved mammal, bird, reptile and mollusc remains, including examples of island gigantism in small mammals and the dwarfing of large taxa. Together with evidence from Early-Middle Pleistocene sites in the Soa Basin, it confirms the long-term isolation, impoverishment, and phylogenetic continuity of the Flores faunal community. The accumulation of Stegodon and Komodo dragon remains at the site in the Pleistocene is attributed to Homo floresiensis, while predatory birds, including an extinct species of owl, were largely responsible for the accumulation of the small vertebrates. The disappearance from the sequence of the two large-bodied, endemic mammals, Stegodon florensis insularis and Homo floresiensis, was associated with a volcanic eruption at 17 ka and precedes the earliest evidence for modern humans, who initiated use of mollusc and shell working, and began to introduce a range of exotic animals to the island. Faunal introductions during the Holocene included the Sulawesi warty pig (Sus celebensis) at about 7 ka, followed by the Eurasian pig (Sus scrofa), Long-tailed macaque, Javanese porcupine, and Masked palm civet at about 4 ka, and cattle, deer, and horse - possibly by the Portuguese within historic times. The Holocene sequence at the site also documents local faunal extinctions - a result of accelerating human population growth, habitat loss, and over-exploitation.  相似文献   

17.
In 1994 and 1995, a 7 m(2)area was excavated at Level 6 of the Gran Dolina site, Atapuerca. A 25 cm deep sub-level, named Aurora Stratum, contained a large number of human fossils, stone tools and faunal remains. The appearance of human remains as part of a butchered faunal assemblage in association with stone tools raises an interesting question relating to human behaviour. The main aim of this paper, therefore, is to evaluate the nature and function of the human occupation at this cave site with a view to understanding the purposes of cannibalism. The zooarchaeological and taphonomic analyses of the macrovertebrate remains focus on species composition, weight and anatomic groups, as well as breakage intensity, type of fragmentation, and surface damage (particularly tool-induced damage) in order to evaluate the faunal source, butchering techniques and economic strategies of the human groups involved. We also studied the distribution and fossil refitting at the site to establish depositional and postdepositional disturbance. Diagenetic breakage due to sediment compression plays an important role in the assemblage, but the most extensive modifications are those produced by human activity for nutritional purposes.  相似文献   

18.
Abstract: Rögla is the northernmost locality yielding Mesozoic plant fossils in Scania, southern Sweden, and is one of the northernmost Rhaetian assemblages in Europe. The assemblage consists of over 500 specimens collected 50–60 years ago, of which 139 yielded identifiable plant remains referable to 15 plant species; another 19 specimens are tentatively assigned to four species because of their fragmentary preservation. The flora includes sphenophytes, ferns, cycads, bennettitaleans, seed ferns of uncertain alliance, conifers and some leaf remains that are tentatively assigned to ginkgophytes based on their epidermal anatomy. The species‐level composition of the assemblage is consistent with a Rhaetian age and is similar to well‐known floras from nearby Höganäs and Bjuv, except for the absence of cycads belonging to Nilssonia, which are very common in most other Scanian floras. The fossil assemblage is interpreted to derive from multi‐storey vegetation occupying moist habitats on a coastal plain. Strong affinities are evident with the coeval floras of Jameson Land, Greenland, reinforcing the concept of a distinctive North Atlantic floristic sub‐province at the close of the Triassic.  相似文献   

19.
Range expansions of species comprise a pervasive environmental problem worldwide and can cause substantial ecological and economic impact. However, the magnitude of impact may vary across habitats, highlighting the need to account for spatial heterogeneity in assessment studies. Here we compare invertebrate community structure in three habitats (littoral, sublittoral, and profundal) of boreal lakes that suffer recurring blooms of a regionally expanding, nuisance flagellate, Gonyostomum semen (Raphidophyta), with the assemblage structure in lakes were no blooms occur. We contrast community structure over a 6-year period using univariate metrics (total abundance, community evenness, species richness, and Simpson diversity) and multivariate community similarity to infer habitat-specific associations of local (alpha) diversity. We also calculated indices of multivariate dispersion to infer associations with beta diversity; i.e., whether or not habitats in bloom lakes show faunal homogenisation. Results show that the magnitude of assemblage alteration in bloom relative to bloom-free lakes varied with habitat and increased from the littoral to the profundal habitats. Littoral assemblages in bloom and bloom-free lakes shared similar alpha (taxon richness, evenness and Simpson diversity) and beta diversity characteristics, despite differing in multivariate community similarity. By contrast, alteration of assemblage structure was most severe in the profundal and manifested in reduced diversity and faunal homogenisation (i.e. decreased beta diversity) in bloom relative to bloom-free lakes. This was due to numerical dominance of the predatory phantom midge, Chaoborus flavicans, in the profundal of bloom lakes. Not only do the results highlight that spatial heterogeneity should be accounted for to assess the potential broader impact of nuisance species on biodiversity within lakes; more generally, the dominance of a single species suggests a reduced overall resilience of bloom lakes, making them more susceptible to environmental perturbation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号