首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the role for initiation factor phosphorylation in de novo translation, we have studied the recovery of human kidney cells from hypertonic stress. Previously, we have demonstrated that hypertonic shock causes a rapid inhibition of protein synthesis, the disaggregation of polysomes, the dephosphorylation of eukaryotic translation initiation factor (eIF)4E, 4E-BP1, and ribosomal protein S6, and increased association of 4E-BP1 with eIF4E. The return of cells to isotonic medium promotes a transient activation of Erk1/2 and the phosphorylation of initiation factors, promoting an increase in protein synthesis that is independent of a requirement for eIF4E phosphorylation. As de novo translation is associated with the phosphorylation of 4E-BP1, we have investigated the role of the signaling pathways required for this event by the use of cell-permeable inhibitors. Surprisingly, although rapamycin, RAD001, wortmannin, and LY294002 inhibited the phosphorylation of 4E-BP1 and its release from eIF4E, they did not prevent the recovery of translation rates. These data suggest that only a small proportion of the available eIF4F complex is required for maximal translation rates under these conditions. Similarly, prevention of Erk1/2 activity alone with low concentrations of PD184352 did not impinge upon de novo translation until later times of recovery from salt shock. However, U0126, which prevented the phosphorylation of Erk1/2, ribosomal protein S6, TSC2, and 4E-BP1, attenuated de novo protein synthesis in recovering cells. These results indicate that the phosphorylation of 4E-BP1 is mediated by both phosphatidylinositol 3-kinase-dependent rapamycin-sensitive and Erk1/2-dependent signaling pathways and that activation of either pathway in isolation is sufficient to promote de novo translation.  相似文献   

2.
3.
Rabies virus protein synthesis in infected BHK-21 cells.   总被引:11,自引:9,他引:2       下载免费PDF全文
Rabies virus specific polypeptide synthesis was examined under hypertonic conditions, which selectively inhibit cellular protein synthesis. The rabies virus proteins (L, G, N, M1, M2) were synthesized throughout the course of infection, with little change in their relative rates of synthesis. The rates of synthesis of the G and M1 polypeptides were more sensitive to increasing osmolarity than those of the L, N, and M2 polypeptides. Extrapolation to isotonicity of the results obtained under hypertonic conditions indicated that the molar ratios of the polypeptides synthesized under normal conditions were 0.4 (L), 64 (G), 100 (N), 75 (M1) and 35 (M2). A high-molecular-weight polypeptide (190,000), designated polypeptide L, was repeatedly detected both in infected cells and in extracellular virus. The estimated number of L polypeptide molecules per virion was 33. The synthesis of a viral glycoprotein precursor, designated gp78, , preceded the appearance of the mature viral glycoprotein in infected cells labeled with [3H]glucosamine under isotonic conditions. In cells labeled under hypertonic conditions, little or no mature viral glycoprotein was detected, but a virus-specific glycoprotein with an electrophoretic mobility similar to that of gp78 was observed. This glycoprotein could be chased into mature viral glycoprotein when the hypertonic conditions were made isotonic. These results suggest that a reversible block of viral glycoprotein synthesis occurs under hypertonic conditions.  相似文献   

4.
5.
Previous work has suggested that increased phosphorylation of eukaryotic initiation factor (eIF) 4E at Ser-209 in the C-terminal loop of the protein often correlates with increased translation rates. However, the functional consequences of phosphorylation have remained contentious with our understanding of the role of eIF4E phosphorylation in translational control far from complete. To investigate the role for eIF4E phosphorylation in de novo translation, we studied the recovery of human kidney cells from hypertonic stress. Results show that hypertonic shock caused a rapid inhibition of protein synthesis and the disaggregation of polysomes. These changes were associated with the dephosphorylation of eIF4G, eIF4E, 4E-binding protein 1 (4E-BP1), and ribosomal protein S6. In addition, decreased levels of the eIF4F complex and increased association of 4E-BP1 with eIF4E were observed over a similar time course. The return of cells to isotonic medium rapidly promoted the phosphorylation of these initiation factors, increased levels of eIF4F complexes, promoted polysome assembly, and increased rates of translation. However, by using a cell-permeable, specific inhibitor of eIF4E kinase, Mnk1 (CGP57380), we show that de novo initiation of translation and eIF4F complex assembly during this recovery phase did not require eIF4E phosphorylation.  相似文献   

6.
The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.  相似文献   

7.
Immunoglobulin heavy (Ig H) and light (Ig L) chain mRNA molecules have been released from the endoplasmic reticulum (ER) membranes as free (F) mRNP particles when MOPC 21 (P3K) mouse myeloma cells are exposed to a hypertonic initiation block (HIB). The subsequent fate of these mRNA sequences has been examined when the cells are returned to normal growth medium. Upon return to isotonicity, all previously translated mRNA molecules reassociate with ribosomes and form functional polysomes. Ig H mRNA is found incorporated first into F polysomes and then into membrane-bound (MB) polysomes. Kinetic studies indicate that the time of passage of Ig H mRNA in F polysomes is approximately 30 s, during which a nascent polypeptide chain of approximately 80 amino acids would have been completed. When the rate of polypeptide elongation is depressed with emetine during the recovery from HIB, both Ig H and L mRNA molecules accumulate in small F polysomes. These results indicate that the formation of Ig-synthesizing polysomes proceeds in the sequence: mRNA leads to F polysomes leads to MB polysomes. With the additional observation that during HIB recovery puromycin completely prevents the reassociation of Ig mRNA with the ER, these findings support a model of MB polysome formation in which the specificity of membrane attachment is determined by the nature of the N- terminal amino acid sequence of the nascent polypeptide chain.  相似文献   

8.
In the past few years, in vivo phosphorylation of ribosomal proteins has been the subject of extensive studies and the results have shown that reversible phosphorylation of small subunit ribosomal protein S6, ubiquitous in eukaryotic cells, is apparently related to regulation of protein synthesis initiation. Thus the level of protein synthesis under various conditions is correlated with the level of S6 phosphorylation. In exponentially growing Tetrahymena, however, such phosphorylation does not occur, but when these cells are transferred to starvation buffers, the rate of protein synthesis is drastically reduced and a 40S ribosomal protein analogous to S6 of higher eukaryotic cells is fully and rapidly phosphorylated in all the ribosomes. We have studied the conditions which lead to this phosphorylation in growth-arrested Tetrahymena, in order to understand the physiological significance of this process. Our results show that there is no obvious correlation between this phosphorylation and starvation. Moreover, it is not a developmentally regulated process related to the conjugation cycle, but a modification induced by the presence of sodium ions or high concentration of Tris in the starvation buffer. The physiological significance of this process is discussed in terms of accumulation of negative charge density probably required for initiation of protein synthesis in the growth-arrested cells starving in Na+-containing buffers.  相似文献   

9.
Hypertonicity effected by elevation of NaCl concentration in the growth medium results in a rapid cessation of protein synthesis in HeLa cells accompanied by a complete breakdown of polyribosomes. Since elongation and termination of polypeptide synthesis proceeds normally, it is concluded that elevated NaCl concentration in the medium selectively inhibits the initiation of peptide chain formation. Pulse-labeling of poliovirus-infected cells at different times after incubation of the cells in hypertonic medium can be used to map the poliovirus genome. Upon restoration of isotonicity re-initiation of protein synthesis occurs only at the proper initiation site and synthesis proceeds at a normal rate. This synchronized re-initiation of protein synthesis observed upon restoration of isotonicity, in turn, allowed us to determine the gene sequence of poliovirus RNA in a novel way.  相似文献   

10.
Increased phosphorylation of ribosomal protein S6 has been extensively correlated with an increased rate of protein synthesis. We report here that under two separate conditions in Ehrlich cells an increase in the level of S6 phosphorylation does not result in any increase in the rate of protein synthesis. 1) In glutamine-deprived cells TPA stimulates S6 phosphorylation but has no effect on the rate of protein synthesis, 2) In cells deprived of serum growth factors, addition of serum stimulates both S6 phosphorylation and protein synthesis while TPA stimulates only S6 phosphorylation. These results show that increased phosphorylation of S6 is not sufficient to cause increased rates of protein synthesis, and suggest that additional factors may play a more direct role.  相似文献   

11.
The synthesis of collagen under conditions in which polypeptide chain initiation is selectively inhibited by medium hypertonicity was compared to the synthesis of other proteins in chick embryo leg bone cells in monolayer cultures. Three different approaches showed that collagen synthesis is far more sensitive than the majority of other cellular proteins to the hypertonic initiation block. In marked contrast, the synthesis of an unidentified protein, migrating with an apparent molecular of 45,000 to 50,000 is particularly resistant to hypertonicity. The effects of hypertonic conditions were found to be readily reversible upon restoration of isotonicity. Since these suboptimal growth conditions can decrease the amount of collagen synthesized relative to total protein synthesis, they provide an experimental model for the study of the translational control of the synthesis of collagen and other proteins.  相似文献   

12.
13.
The effect of insulin on the phosphorylation of ribosomal protein S6 was studied in a human liver cell line (HepG-2), using [32P] inorganic phosphate. Increased rate of protein S6 phosphorylation was detected 8 min following the addition of insulin to serum starved cells. Maximum enhancement of phosphorylation was observed at 80 nM insulin. Minimum level of insulin required to produce measurable increase of S6 phosphorylation was 20 nM. Radioactivity of protein S6 increased most in the native subunit and polysome fractions. Significant increase in radioactivity of this protein was not observed in the monosome fraction during the first 30 min of insulin stimulation. Increase in the specific radioactivity of native 40S subunit was higher than that of polysomes. These results suggest that phosphorylation takes place in the subunit compartment and moves preferentially into the polysomes.  相似文献   

14.
Ribosome phosphorylation was studied by monitoring the phosphorylation state of small subunit protein S6 as visualized on two-dimensional electrophoretograms of ribosomal proteins isolated from rat liver. No phosphorylation of S6 was observed under conditions of ethionine-induced inhibition of protein synthesis. Moderate phosphorylation, detected as the appearance of S6 and four or five phosphorylated derivatives, was observed in saline-treated animals. Reversal of ethionine-induced inhibition of protein synthesis by treatment with adenine led to extensive phosphorylation of S6. A model for protein synthesis which includes requisite phosphorylation of ribosomes during initiation is proposed. Cyclic adenosine 3':5'-monophosphate concentration was significantly elevated in liver of both ethionine- and ethionine plus adenine-treated rats, relative to that of saline-treated animals.  相似文献   

15.
Incubation of the reticulocyte lysate cell-free system with KF results in the accumulation in polysomes of complexes containing deacylated tRNAMet and of complexes which can initiate globin chains in the presence of aurintricarboxylate. Degradation of these polysomes with T1RNase yields both 40 S and 80 S particles, and tRNAMet is found in both of these fractions. When the 80 S particles are reincubated with the soluble fraction of the lysate plus reagents for protein synthesis, short peptides which have the properties of the NH2-terminal regions of globin are synthesized de novo. These peptides are deficient in NH2-terminal methionine, but occur under conditions where nascent globin peptides of comparable length, containing NH2-terminal methionine, are completely protected from the methionine aminopeptidase.  相似文献   

16.
Cell-free cytosolic extracts from the Yoshida (AH 130) rat ascites hepatoma cell line, grown in vivo, showed high ribosomal protein S6 kinase activity in vitro, as measured by transfer of 32P to exogenous 40S rat liver ribosomal subunits, in both exponential growing and stationary phase cells. A significant decrease of protein synthesis (3H-leucine incorporation into total cell protein) was found to occur in cells reaching the stationary phase of growth, suggesting that S6 phosphorylation was not tightly coupled to the rate of the intraperitoneal cell growth and of protein synthesis in these tumor cells. When the cell-free cytosolic extracts were prepared from cells exposed to amiloride, at concentrations that inhibit the Na+/H+ exchange, a decrease of S6 kinase activity was observed only in exponential growing cells, suggesting the possibility of coupling of the Na+/H+ exchange with phosphorylation of intracellular proteins in these tumor cells. Actually, stationary phase cells showed unchanged S6 kinase activity under the same conditions, possibly due to the extremely low Na+/H+ exchange activity, previously demonstrated (Cell Biol. Int. Rep., 1985, 9, 1017-1025). The present experiments support the hypothesis that the regulation of protein synthesis is not tightly coupled to phosphorylation-dephosphorylation cycles, at least of ribosomal protein S6, in cells characterized by a rather uncontrolled growth such as the Yoshida (AH 130) rat ascites hepatoma. In this connection, an elevated degree of protein phosphorylation, such as that of the ribosomal protein S6, could be a general phenomenon of neoplastic transformation.  相似文献   

17.
18.
To test the connection between S6 phosphorylation and the activation of protein and DNA synthesis, we compared the effects of serum, epidermal growth factor (EGF), prostaglandin F (PGF) and insulin (which is not mitogenic in these cells). Increasing concentrations of serum or EGF produced roughly parallel effects on all three processes, though the maximum response elicited by EGF (10?9 M) was only a portion of that caused by saturating levels of serum (7.5% to 10%). PGF (8.5 × 10?7 M) alone acted similarly to EGF (10?9 M) and with EGF produced a synergistic effect on all three processes. Insulin (10?9 M) alone stimulated both S6 phosphorylation and protein synthesis to approximately the same level as EGF or PGF, but had no effect on initiation of DNA synthesis. Thus neither stimulation of S6 phosphorylation nor activation of protein synthesis is sufficient for initiation of DNA synthesis. The requirement for S6 phosphorylation could not be dissociated from the activation of protein synthesis. Ribosomes containing the most highly phosphorylated forms of S6 appear to have a selective advantage in entering polysomes.  相似文献   

19.
The protein covalent modification state of eucaryotic initiation factors eIF-2 and eIF-4B in HeLa cells was examined after they were exposed to a variety of conditions or treatments that regulate protein synthesis. A few factors (e.g., variant pH and sodium fluoride) altered the phosphorylation state of the initiation factor proteins, but the majority (hypertonic medium, ethanol, dimethyl sulfoxide sodium selenite, sodium azide, and colchicine) had no effect on either protein. While initiation factor phosphorylation may regulate protein synthesis in response to many physiological situations, other pathways can regulate protein synthesis under nonphysiological circumstances.  相似文献   

20.
In Tetrahymena the small ribosomal subunit protein S7, which appears to be the equivalent of S6 of higher eukaryotes, undergoes reversible phosphorylation under a set of defined conditions. In an attempt to understand the physiological role of such reversible phosphorylation, we examined the status of ribosomal protein S7 in growing cells and growth-arrested cells, starving either non-specifically for nutrients or specifically for a single essential amino acid. These experiments allowed us to dissociate S7 phosphorylation from changes in the translational activity and the stability of ribosomes. The results revealed complete lack of correlation between phosphorylation of S7 and both the growth status of the cells and the in vivo stability of ribosomes. Taken together with the observation that phosphorylation of S7 occurs only when the cells are starved in buffers containing sodium chloride or high concentrations of Tris, non-essential ions for normal growth, our data suggest that this protein modification is required to maintain the functional integrity of the ribosomes in an altered electrostatic environment, induced by changes in the extracellular ionic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号