首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid emulsions were prepared with a similar size and lipid composition to natural lymph chylomicrons, but in which the surface phospholipid was either egg phosphatidylcholine, dioleoyl-, dimyristoyl-, dipalmitoyl- or 1-palmitoyl-2-oleoylphosphatidylcholine (EYPC, DOPC, DMPC, DPPC or POPC). When injected into the bloodstream of conscious rats, the emulsions containing EYPC or POPC were metabolized similarly to natural chylomicrons, consistent with rapid lipoprotein lipase-mediated hydrolysis of triacylglycerols, followed by hepatic uptake of the remnants derived from the emulsions. Phospholipids from the injected emulsions were removed more slowly and became associated with the high-density lipoprotein fractions of the plasma. Emulsions containing DPPC were metabolized differently. Triacylglycerols disappeared very slowly from plasma, indicating lack of hydrolysis by lipoprotein lipase, and phospholipid radioactivity did not transfer to high-density lipoprotein. With emulsions containing DMPC, the plasma removal rates for emulsion triacylglycerols and cholesteryl esters were fast, but phospholipid radioactivity failed to transfer to the high-density lipoprotein fractions of plasma. With DOPC emulsions, clearances were slower than EYPC or POPC emulsions, but transfer to high-density lipoproteins was efficient. Therefore, an unsaturated chain at the glycerol 2-position was necessary for rapid hydrolysis by lipoprotein lipase and for efficient transfer of phospholipids to high-density lipoproteins. With an unsaturated chain at the glycerol 2-position, a saturated chain at the glycerol 1-position optimized the rate of remnant removal from the plasma.  相似文献   

2.
Emulsions with lipid compositions similar to the triacylglycerol-rich lipoproteins were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. Radioactive labels tracing the emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the blood stream, but the removal rate of triacylglycerols was faster than that of cholesteryl ester. Most of the removed cholesteryl ester label was found in the liver, but only a small fraction of the triacylglycerol label was found in this organ, consistent with hepatic uptake of the remnants of the injected emulsion. Emulsions otherwise identical but excluding unesterified cholesterol were metabolized differently. The plasma removal of triacylglycerols remained fast, but the cholesteryl esters were removed very slowly. Heparin stimulated lipolysis, but failed to increase the rate of removal of cholesteryl esters from emulsions lacking cholesterol. Evidently, emulsions lacking cholesterol were acted on by the enzyme lipoprotein lipase, but the resultant triacylglycerol-depleted remnant particle remained in the plasma instead of being rapidly taken up by the liver. Therefore, the presence of emulsion cholesterol is a critical determinant of early metabolic events, and the findings point to a similar role for cholesterol in the natural triacylglycerol-rich lipoproteins.  相似文献   

3.
Metabolism of protein-free lipid emulsion models of chylomicrons in rats   总被引:4,自引:0,他引:4  
Emulsions were prepared by ultrasonication of mixtures of triolein, cholesteryl oleate, phosphatidylcholine and cholesterol in aqueous dispersions, then purified by ultracentrifugation. After injection into rats, the metabolism of the artificial, protein-free emulsions was comparable to the metabolism of chylomicrons collected from rat intestinal lymph during the absorption of fat. Like chylomicrons, the emulsion triacylglycerol was removed from the plasma more quickly than emulsion cholesteryl ester. Also like chylomicrons, much more emulsion cholesteryl ester than triacylglycerol appeared in the liver 10 min after injection, and only trace amounts appeared in the spleen. Because the artificial emulsions gained apolipoproteins when incubated with plasma, their metabolism was probably facilitated by the recipient rat plasma apolipoproteins and so, in rats made apolipoprotein-deficient by treatment with estrogen, the removal of emulsions from the plasma was slowed. Removal was also slowed in hyperlipidemic rats fed a high-fat, high-cholesterol diet to expand the plasma pools of the triacylglycerol-rich lipoproteins and remnants. The results indicate that the metabolism of lymph chylomicrons can be modeled by artificial, protein-free lipid emulsions not only in the initial partial hydrolysis by lipoprotein lipase, but also in the delivery of a remnant-like particle to the liver.  相似文献   

4.
In rats, remnant particles derived from chylomicron-like emulsions containing 1,3-dioleoyl-2-stearoylglycerol (OSO) are removed from plasma more slowly than remnants derived from triolein emulsions. The effect associated with a saturated acyl chain at the glycerol 2-position could be reproduced by incorporating 2-stearoylglycerol (MS) in a triolein emulsion. When MS solubilized with rat albumin or in plasma was injected before the injection of a triolein emulsion, clearance of the triolein emulsion was unchanged. The metabolic fate of MS, monitored with 14C-labelled MS, was similar whether incorporated in triacylglycerol emulsion or injected independently. More than 95% of MS had disappeared from the circulation by 5 min after the injection and the radioactivity was found in liver, spleen, muscle and adipose tissue. Some MS label appeared in plasma triacylglycerol. Remnants made in vitro by incubating triolein or OSO emulsions with post-heparin plasma showed no differences in their disappearance from plasma. With OSO emulsion, the in vitro remnants were found to contain more MS than remnants made in vivo in hepatectomized rats. Simultaneous injections of mixtures containing OSO and triolein emulsions, or triolein emulsions with and without MS, each labelled with either [3H]cholesteryl oleate or [14C]cholesteryl oleate showed consistently slower remnant removal and decreased liver uptake of the emulsions containing OSO or MS. Affinity columns and immunodiffusion all indicated that there was no difference in the amounts of apolipoprotein E associated with OSO or triolein particles. The protein spectra of in vivo remnants derived from OSO and triolein emulsion were also similar when examined by SDS-PAGE and isoelectric focusing gels. Our results show that the effects due to OSO or MS are mediated by the presence of MS in the emulsion particle surface, while indirect effects expressed in plasma or liver are excluded. The precise mechanism of the effect remains to be established, but it does not correlate with measurable changes in the spectra of apolipoproteins associated with the emulsion remnants.  相似文献   

5.
Lipid emulsion particles were prepared by sonicating four different lipid mixtures (triacylglycerol (TAG), 70%; phospholipid, 25%; cholesteryl oleate (CO), 3%; and free cholesterol, 2%), then purified by density gradient ultracentrifugation. For three test mixtures, the TAG contained 50, 75, or 100% 1,3-dioleyl-2-stearylglycerol (OSO) with the remainder being triolein (OOO); 100% triolein in the lipid mixture was used as the control. After intravenous injection of the lipid particles into unanesthetized rats, removal of radioactive TAG fatty acid and CO from plasma was measured for 30 min, then liver and spleen uptakes were measured. When emulsions contained 75% or 100% OSO as TAG, the plasma removal rates of CO were, respectively, 60% or 30% of the rate when the TAG was 100% triolein; smaller recoveries of CO were found in the liver. The clearances of TAG fatty acid did not differ significantly and the recoveries of TAG fatty acid in the organs were not affected by the type of emulsion injected. Remnant particles were derived from donor rats in which uptake was blocked by exclusion of liver and other viscera from the circulation before injection of 100% OOO and 100% OSO emulsions. When injected into recipient intact rats, the removal of remnants from plasma was slower for remnants derived 15 min after injection of 100% OSO emulsions than from 100% OOO emulsions, showing that the slower removal of emulsion CO was due to slower remnant uptake from the plasma with OSO emulsions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
There are inverse relationships between HDL cholesterol and plasma triacylglycerol concentrations in normal and in hypertriglyceridemic individuals. To investigate the interactions between triacylglycerol-rich lipid particles and HDL, a lipid emulsion model of the triacylglycerol-rich lipoproteins was prepared. When emulsion particles were incubated with rat high-density lipoproteins (HDL) in the presence of lipid transfer activity (d greater than 1.21 g/ml fractions) from rabbit or human plasma there was a rapid bi-directional exchange of cholesteryl oleate (CO) and phospholipid (PL) labels between lighter and heavier fractions of HDL and emulsion particles. The transfers of CO and PL labels between both light and heavy fractions of HDL and the emulsion particles were increased with increasing amounts of emulsion added to the incubations. Incubation with the d greater than 1.21 g/ml fraction from rat plasma resulted in only a small exchange of CO whereas PL exchange was similar to rabbit and human plasma. Retinyl palmitate label was not transferred from emulsion particles to the HDL fractions even in the presence of lipid transfer activity from rabbit or human plasma. The present study shows that the transfer protein-mediated exchanges of surface and core lipids between HDL and the triacylglycerol-rich lipoproteins are affected by the quantity of triacylglycerol-rich particles in the system. This mechanism may contribute to the inverse relationships between plasma triacylglycerol concentrations and HDL concentrations in normal and hypertriglyceridemic individuals.  相似文献   

7.
Trout high-density lipoproteins have been labelled with residualizing tracers for the lipid and protein moieties ([3H]cholesteryloleyl ether and 125I-tyramine-cellobiose, respectively). Plasma kinetics and tissue site of catabolism were determined for both tracers. The lipid tracer was cleared about twice as fast from the blood as the protein tracer (half lifes were 63.5 and 125.3 h, respectively). This selective removal of lipid from the lipoprotein was mainly accomplished by the higher liver uptake of the cholesteryl ether. The main catabolic site for HDL protein was kidney tissue. This data established the existence of differential HDL catabolism in a lower vertebrate, in which HDL is the dominant plasma lipoprotein. In addition, the findings confirm the importance of fish kidney as a major site of endocytosis of macromolecules, of both exogenous and endogenous origin.  相似文献   

8.
Lipid emulsions were prepared with compositions similar to the triacylglycerol-rich plasma lipoproteins, but also incorporating added small amounts of monoacylglycerols. Control emulsions without monoacylglycerol were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. The emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the bloodstream, with the removal rates of triacylglycerols faster than those of cholesteryl esters. Much of the removed cholesteryl ester was found in the liver, but only a small fraction of the triacylglycerol, consistent with hepatic uptake of the triacylglycerol-depleted remnants of the injected emulsion. Emulsions incorporating added monooleoylglycerol or stearic acid were metabolized similarly. Added 1- or 2-monostearoylglycerol had no effect on triacylglycerol removal from plasma, but the removal rate of cholesteryl esters was decreased and less cholesteryl ester was found in the liver. These effects are similar to those recently described when emulsions and chylomicrons contained triacylglycerols with a saturated acyl chain at the glycerol 2-position, suggesting that saturated monoacylglycerol produced by the action of lipoprotein lipase may cause triacylglycerol-depleted remnant particles to remain in the plasma instead of being rapidly taken up by the liver.  相似文献   

9.
In order to determine the effects of a plasma phospholipid transfer protein on the transfer of phospholipids from very low density lipoproteins (VLDL) to high density lipoproteins (HDL) during lipolysis, biosynthetically labeled rat 32P-labeled VLDL was incubated with human HDL3 and bovine milk lipoprotein lipase (LPL) in the presence of the plasma d greater than 1.21 g/ml fraction or a partially purified human plasma phospholipid transfer protein (PTP). The addition of either the PTP or the d greater than 1.21 g/ml fraction resulted in a 2- to 3-fold stimulation of the transfer of phospholipid radioactivity from VLDL into HDL during lipolysis. In the absence of LPL, the PTP caused a less marked stimulation of transfer of phospholipid radioactivity. Both the d greater than 1.21 g/ml fraction and the PTP enhanced the transfer of VLDL phospholipid mass into HDL, but the percentage transfer of phospholipid radioactivity was greater than that of phospholipid mass, suggesting stimulation of both transfer and exchange processes. Stimulation of phospholipid exchange was confirmed in experiments where PTP was found to augment transfer of [14C]phosphatidylcholine radioactivity from HDL to VLDL during lipolysis. In experiments performed with human VLDL and human HDL3, both the d greater than 1.21 g/ml fraction and the PTP were found to stimulate phospholipid mass transfer from VLDL into HDL during lipolysis. Analysis of HDL by non-denaturing polyacrylamide gradient gel electrophoresis showed that enhanced lipid transfer was associated with only a slight increase in particle size, suggesting incorporation of lipid by formation of new HDL particles. In conclusion, the plasma d greater than 1.21 g/ml fraction and a plasma PTP enhance the net transfer of VLDL phospholipids into HDL and also exchange of the phospholipids of VLDL and HDL. Both the transfer and exchange activities of PTP are stimulated by lipolysis.  相似文献   

10.
The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidy[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipids by apolipoprotein C-III. The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface. Although apolipoprotein A-I and arginine-rich protein gave surface pressure increases, phospholipid was only slightly removed fromthe interface by the addition of liposomes. Based on these findings, we conclude that the apolipoproteins C interact specifically with phosphatidylcholine at the interface. This interaction is important as it relates to the transfer of the apolipoproteins C and phospholipids from very low density lipoproteins to other plasma lipoproteins. The addition of human plasma high density lipoproteins or very low density lipoproteins to the subphase increased the apolipoprotein C-mediated removal of phosphatidyl[14C]choline from the interface 3--4 fold. Low density lipoproteins did not affect the rate of decrease. During lipolysis of very low density lipoproteins to the subphase increased the apolipoprotein C-mediated removal of with the lipid monolayer. Lipolysis experiments were performed in a monolayer trough containing a surface film of egg phosphatidyl[14C]choline and a subphase of very low density lipoproteins and bovine serum albumin. Lipolysis was initiated by the addition of purified milk lipoprotein lipase to the subphase. As a result of lipolysis, there was a decrease in surface radioactivity of phosphatidylcholine. The pre-addition of high density lipoproteins decreased the rate of decrease in surface radioactivity...  相似文献   

11.
Like most commercial parenteral emulsions, Intralipid contains the same amount of phospholipids (12 mg/ml) to stabilize 100 or 200 mg of soybean oil (10 or 20% formula, respectively). By centrifugation, 10 or 20% Intralipid was separated into a supernatant, fat particles containing the bulk of triacylglycerols stabilized by a fraction of phospholipids and an infranatant--called mesophase--consisting mainly of phospholipids used in excess as emulsifier. We observed that the initial triacylglycerol/phospholipid ratio of the emulsion (100/12 and 200/12, respectively) determines the size of the triacylglycerol-rich particles (260 and 350 nm) as well as the phospholipid content of the mesophase (6.02 and 4.67 mg/ml). To understand the mechanism of the lipoprotein-X (LPX) accumulation generally reported after intravenous fat infusions, plasma lipid levels and lipoprotein profiles were first compared in the rats after infusion (at a constant rate of 0.5 or 1 ml/h for 43 h) of Intralipid 10 or 20%. For the same intravenous triacylglycerol load (100 mg/h), rats infused with Intralipid 10% at 1 ml/h displayed higher triacylglycerol levels than rats infused with the 20% emulsion at 0.5 ml/h, suggesting that the size of exogenous fat particles modulated the catabolic rate of their triacylglycerols. The plasma levels of LPX varied according to the infusion rate of phospholipids not associated with triacylglycerol-rich particles of the emulsion. Moreover, an apo E and apo B enrichment of plasma and an elevation of the apo B48/apo B100 ratio was always observed after Intralipid infusions. In order to confirm that phospholipids of the mesophase are the main LPX precursors, lipoprotein profiles were then compared in the rats after intravenous infusion, at a constant rate of 1 ml/h, of either the mesophase or a suspension of triacylglycerol-rich particles isolated from Intralipid 20%. As expected, significant LPX amounts were only detected in rats infused with the pure mesophase of the emulsion. It was concluded that products of the lipolysis of exogenous fat particles play only a minor role in the formation of LPX. In fact these abnormal lipoproteins are generated by phospholipids of the mesophase which, like infused liposomes, actively mobilize endogenous free cholesterol. Consequently, in order to be considered as true chylomicron models for safe fat delivery in parenteral nutrition and in order to prevent some detrimental effects on cholesterol metabolism, commercial emulsions should be cleared of phospholipid excess.  相似文献   

12.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

13.
O-(4-Diazo-3-[125I]iodobenzoyl)sucrose ([125I]DIBS), a novel labelling compound specifically designed to study the catabolic sites of serum proteins [De Jong, Bouma, & Gruber (1981) Biochem. J. 198, 45-51], was applied to study the tissue sites of degradation of serum lipoproteins. [125I]DIBS-labelled apolipoproteins (apo) E and A-I, added in tracer amounts to rat serum, associate with high-density lipoproteins (HDL) just like conventionally iodinated apo E and A-I. No difference is observed between the serum decays of chromatographically isolated [125I]DIBS-labelled and conventionally iodinated HDL labelled specifically in either apo E or apo A-I. When these specifically labelled HDLs are injected into fasted rats, a substantial [125I]DIBS-dependent 125I accumulation occurs in the kidneys and in the liver. No [125I]DIBS-dependent accumulation is observed in the kidneys after injection of labelled asialofetuin or human low-density lipoprotein. It is concluded that the kidneys and the liver are important sites of catabolism of rat HDL apo E and A-I.  相似文献   

14.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

15.
Hepatic triacylglycerol-lipase-mediated hydrolysis and liver uptake of high-density lipoprotein (HDL) lipid components were studied in a recirculating rat liver perfusion, a situation where the enzyme is physiologically expressed and active at the vascular bed. Human native HDL were labelled with tri-[3H]oleoylglycerol, [N-methyl-3H]dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl,2-[14C]linoleoylphosphatidylcholine (PLPC), 1-palmitoyl,2-[14C]linoleoylphosphatidyl-ethanolamine (PLPE) and 1-palmitoyl,2-[14C]palmitoylphosphatidylethanolamine (DPPE). (1) Relative degradation rates of phosphatidylethanolamine molecular species were 2- to 10-fold higher than those of phosphatidylcholine. Considering [14C] PLPC and [14C] PLPE as representative of HDL phosphatidylcholine and phosphatidylethanolamine, respectively, the amounts of lysophosphatidylcholine and lysophosphatidylethanolamine generated after a 60 min perfusion were comparable. The enzyme showed a clear preference for the molecular species bearing an unsaturated fatty acid at the 2 position of glycerol; this was the most pronounced in the case of phosphatidylethanolamine molecular species. (2) Relative liver uptake of HDL-phosphatidylethanolamine was 4- to 5-fold higher than that of HDL-phosphatidylcholine, irrespective of the constitutive fatty acids. Nevertheless, mass estimation indicated that 3 times more molecules of phosphatidylcholine than of phosphatidylethanolamine were transferred. No correlation could be found between the relative degradation rates of phospholipids and their relative liver uptake, indicating a dissociation between the two processes. (3) Perfusate decay and relative liver uptake of labelled HDL-triacylglycerol were higher than that of any phospholipid class. No circulating radiolabelled free fatty acids accumulated in the perfusate, but they were found acylated into liver cell phospholipids and triacylglycerols. (4) A prior 10-12-min washout of the liver vascular bed with heparin removed over 80% of the hepatic lipase activity, as assessed by specific immunoinhibition. Hepatic lipase-depleted liver displayed impaired phospholipid hydrolysis and triacyglycerol uptake, whereas the transfer of HDL phospholipids to liver tissue was unaffected.  相似文献   

16.
Factors influencing the association of apoA-IV with high density lipoproteins (HDL) were investigated by employing a crossed immunoelectrophoresis assay to estimate the distribution of rat plasma apoA-IV between the lipoprotein-free and HDL fractions. Incubation of rat plasma at 37 degrees C resulted in the complete transfer of lipoprotein-free apoA-IV to HDL within 45 min. When plasma obtained from fat-fed rats was incubated at 37 degrees C in the presence of postheparin plasma as a source of lipolytic activity, there was a complete transfer of HDL apoA-IV to the lipoprotein-free fraction within 30 min. With extended incubation (120 min), lipoprotein-free apoA-IV began to transfer back to HDL. Similar patterns of apoA-IV redistribution were seen when plasma from fat-fed rats was incubated with postheparin heart perfusate or was perfused through a beating heart. Incubations conducted with plasma obtained from fasted rats showed similar but markedly attenuated apoA-IV responses. Similar observations were found in vivo following intravenous heparin administration. To determine whether the transfer of apolipoproteins from triglyceride-rich lipoproteins to HDL was partially responsible for the lipolysis-induced redistribution of apoA-IV, purified apoA-I, apoE, and C apolipoproteins were added to plasma from fasted rats. When added to plasma, all of the apolipoproteins tested displaced apoA-IV from HDL in a dose-dependent manner. Conversely, apolipoproteins were removed from HDL by adding Intralipid to plasma from fasted rats. With increasing concentrations of Intralipid, there was a progressive loss of HDL apoC-III and a progressive increase in HDL apoA-IV. Intravenous injection of a bolus of Intralipid to fasted rats resulted in a transient decrease of HDL apoC-III and concomitant increase in HDL apoA-IV. From these studies, we conclude that the binding of apoA-IV to HDL is favored under conditions that result in a relative deficit of HDL surface components, such as following cholesterol esterification by LCAT or transfer of apolipoproteins to nascent triglyceride-rich lipoproteins.  相似文献   

17.
Abstract: Brain fatty acid incorporation into phospholipids can be measured in vivo following intravenous injection of fatty acid tracer. However, to calculate a cerebral incorporation rate, knowledge is required of tracer specific activity in the final brain precursor pool. To determine this for one tracer, unesterified [3H]arachidonate was infused intravenously in pentobarbital-anesthetized rats to maintain constant plasma specific activity for 1–10 min. At the end of infusion, animals were killed by microwave irradiation and analyzed for tracer specific activity and concentration in brain phospholipid, neutral lipid, and lipid precursor, i.e., unesterified arachidonate and arachidonoyl-CoA, pools. Tracer specific activity in brain unesterified arachidonate and arachidonoyl-CoA rose quickly ( t 1/2 < 1 min) to steady-state values that averaged <5% of plasma specific activity. Incorporation was rapid, as >85% of brain tracer was present in phospholipids at 1 min of infusion. The results demonstrate that unesterified arachidonate is rapidly taken up and incorporated in brain but that brain phospholipid precursor pools fail to equilibrate with plasma in short experiments. Low brain precursor specific activity may result from (a) dilution of label with unlabeled arachidonate from alternate sources or (b) precursor pool compartmentalization. The results suggest that arachidonate turnover in brain phospholipids is more rapid than previously assumed.  相似文献   

18.
The concentration and composition of phospholipids and mitotic activity in regenerating rat liver were studied. (1) The total amount of liver phospholipid increased approximately linearly during 48h after operation but without change in the relative concentrations of individual phospholipids. (2) The appearance of mitoses 30h after operation was accompanied by an increased incorporation of (32)P into the liver phospholipids. (3) The regenerating livers incorporated a higher percentage of the label into the phosphatidylserine+phosphatidylinositol fraction than those of control rats. The percentage of the label incorporated into phosphatidylethanolamine in these livers increased but decreased in the phosphatidylcholine.  相似文献   

19.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Phospholipid transfer protein gene knock-out (Pltp KO) mice have defective transfer of very low density lipoprotein (VLDL) phospholipids into high density lipoprotein (HDL) and markedly decreased HDL levels (Jiang et al. 1999. J. Clin. Invest. 103: 907-914). These animals also accumulated VLDL- and LDL-sized lipoproteins on a high saturated fat diet. The goals of this study were to further characterize the abnormal lipoproteins of Pltp KO mice and to determine the mechanisms responsible for low HDL levels. A lipoprotein fraction enriched in lamellar structures was isolated from the low density lipoprotein (LDL) region and was shown to be phospholipid- and free cholesterol-rich and to have apoA-IV (55%) and apoE (25%) as major apolipoproteins. The lamellar lipoproteins accumulating in these mice probably represent surface material derived from triglyceride-rich lipoproteins (TRL). The HDL was found to be protein-rich (primarily apoA-I) and specifically depleted in phosphatidylcholine (PC) (28% in wild-type mice (WT) vs. 15% in Pltp KO mice, P < 0.001). Unexpectedly, turnover studies using autologous HDL revealed a profound 4-fold increase in the catabolism of HDL protein and cholesteryl ester in Pltp KO mice compared to wild-type, with minor differences in synthesis rates. In contrast, injection of WT mouse HDL into Pltp KO mice showed only a 2-fold increase in fractional catabolism. Reminiscent of the defect in Tangier disease, the failure of transfer of PC from TRL into the HDL fraction results in dramatic hypercatabolism of HDL. These results suggest that defective phospholipid transfer from TRL into HDL, arising from decreased lipolysis or decreased PLTP activity, could lead to hypoalphalipoproteinemia characterized by hypercatabolism of HDL protein. lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号