首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several bacterial species express surface proteins with affinity for the constant region (Fc) of immunoglobulin (Ig) of different animal species. Previous studies from our group have reported the presence of an IgG-binding protein in various serotypes of Streptococcus suis . This molecule was also shown to bind in a non-immune fashion chicken IgY and to our knowledge this characteristic is unique. In the present study, by dot-blotting, we showed that the native protein, obtained by affinity chromatography, reacted more strongly with IgG from various animal species than the denatured material. Using a competitive enzyme-linked immunosorbent assay the affinity of the native 60-kDa protein (previously identified as a 52-kDa protein) towards IgG of various animal species was compared to pig IgG. Bovine, goat and human IgG were able to compete effectively with pig IgG whereas chicken IgY constituted a poor competitor. Peptide mapping analysis using denatured protein indicated that pig and bovine IgG recognized the same proteolytic fragment whereas chicken IgY did not. The smallest proteolytic fragment that retained the binding activity towards the IgG of the different animal species tested had a molecular mass of approximately 40 kDa. Fragments with M r<40 kDa showed specific binding activities. That is, the smallest fragment binding pig and bovine IgG had a M r of 30 kDa whereas for goat and human IgG a fragment of less than 16 kDa still showed binding activity. Finally, we observed that antisera raised against a heat-shock protein of Pseudomonas aeruginosa reacted with the 60-kDa S. suis protein indicating that the S. suis 60-kDa protein is a member of the 60-kDa hsp family that possesses the characteristic of binding in a non-immune way mammalian IgG and chicken IgY.  相似文献   

2.
The dominant proteins released by Ascaris suum during development in vitro from the L3 to L4 stage were identified as collagenous cuticular proteins by sequence analysis and susceptibility to digestion by collagenase. Under reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the collagen proteins separated into 3 groups with molecular weights estimated at 32 kDa, 54-60 kDa, and 71-91 kDa. The 32-kDa protein represents monomeric collagen; the 54-60- and 71-91-kDa components represent dimeric and trimeric forms, respectively, polymerized by nonreducible cross-links. Furthermore, the release of these forms of collagen was developmentally regulated, as exemplified by a sequential temporal progression from monomeric to dimeric to trimeric forms in association with the in vitro transition from L3 to L4. The data suggest that collagen released in vitro during development of A. suum L3 to L4 reflects the increased translation of collagen gene products and their initial assembly into higher molecular weight molecules associated with the synthesis of the L4 cuticle. A biotinylated dipeptidyl fluoromethylketone cysteine protease inhibitor (Bio-phe-ala-FMK) bound specifically to the 32-kDa collagen and, to a lesser extent, to a 30-kDa protein; binding was dependent on the presence of dithiothreitol (DTT) and was prevented by iodoacetamide. Because cysteine residues play an essential role in the initial assembly of the collagen monomers into the higher molecular weight oligomers present in the mature nematode cuticle, inhibition of molting of A. suum L3 to L4 by the cysteine protease inhibitor Z-phe-ala-FMK might be due to its binding to thiol groups of collagen monomers during a critical phase of collagen assembly. Prevention of cystine cross-links during this critical period of cuticle assembly by peptide-FMK inhibitors may represent a potential control mechanism having a novel mechanism of action.  相似文献   

3.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

4.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

5.
Domain mapping of chicken gizzard caldesmon   总被引:5,自引:0,他引:5  
Limited proteolysis, affinity chromatography, and immunoblotting have been used to define the domains of chicken gizzard caldesmon, caldesmon120, that interact with calmodulin, F-actin, and a monoclonal antibody prepared using human platelet caldesmon. Treatment of caldesmon120 with chymotrypsin produces groups of fragments near 100, 80, 60, 38, and 20 kDa. Further digestion produces peptides between 40 and 50 kDa. The 100- and 80-kDa peptides cross-react with the monoclonal antibody; the smaller polypeptides do not. The kinetics of cleavage and the antibody studies indicate that the 38- and 80-kDa fragments are the two major pieces of the 120-kDa protein. The 38-kDa fragment, purified by high performance liquid chromatography, and several of its subfragments at 21 and 25 kDa sediment with F-actin, bind to calmodulin-Sepharose in the presence of Ca2+, and are displaced from F-actin by Ca2+-calmodulin. The 80-kDa fragments did not interact with F-actin or calmodulin. We have tentatively placed the 38-kDa fragment at the C-terminal using polyclonal antibodies selected against a beta-galactosidase-caldesmon120 fusion protein produced by a lambda gt11 lysogen. The 38-, 25-, and 21-kDa fragments cross-react with these antibodies; the 80- and 60-kDa fragments do not. Caldesmon77 from human platelets also cross-reacts with these selected antibodies. The results suggest that interacting calmodulin and F-actin binding sites are localized on a 38-kDa C-terminal fragment of caldesmon. The smallest subfragment of this peptide that binds to both F-actin and calmodulin-Sepharose is about 21 kDa. The monoclonal antibody epitope is tentatively localized near the N-terminal of caldesmon77 and must be within 50 kDa of the N-terminal on caldesmon120.  相似文献   

6.
In prion disease, the abnormal conformer of the cellular prion protein, PrP(Sc), deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrP(Sc) to proteolytic digestion in vitro generates a core fragment of 19-21 kDa, named PrP27-30, which is also found in vivo. Recent evidence indicates that abnormal truncated fragments other than PrP27-30 may form in prion disease either in vivo or in vitro. We characterized a novel protease-resistant PrP fragment migrating 2-3 kDa faster than PrP27-30 in Creutzfeldt-Jakob disease (CJD) brains. The fragment has a size of about 18.5 kDa when associated with PrP27-30 type 1 (21 kDa) and of 17 kDa when associated with type 2 (19 kDa). Molecular mass and epitope mapping showed that the two fragments share the primary N-terminal sequence with PrP27-30 types 1 and 2, respectively, but lack a few amino acids at the very end of C terminus together with the glycosylphosphatidylinositol anchor. The amounts of the 18.5- or 17-kDa fragments and the previously described 13-kDa PrP(Sc) C-terminal fragment relatively to the PrP27-30 signal significantly differed among CJD subtypes. Furthermore, protease digestion of PrP(Sc) or PrP27-30 in partially denaturing conditions generated an additional truncated fragment of about 16 kDa only in typical sporadic CJD (i.e. MM1). These results show that the physicochemical heterogeneity of PrP(Sc) in CJD extends to abnormal truncated forms of the protein. The findings support the notion of distinct structural "conformers" of PrP(Sc) and indicate that the characterization of truncated PrP(Sc) forms may further improve molecular typing in CJD.  相似文献   

7.
Proteolytic cleavage of pyridoxal kinase into two structural domains   总被引:1,自引:0,他引:1  
Chymotryptic digestion of sheep brain pyridoxal kinase, a dimer of identical subunits each of 40 kDa, yields 2 fragments of 24 and 16 kDa with concomitant loss of catalytic activity. These fragments were separated by chromatographic techniques and analyzed for interaction with the ATP analogue, trinitrophenyl-ATP, using fluorescence spectroscopy. The absorption and fluorescence properties of trinitrophenyl-ATP bound to the fragment of 24 kDa (emission maximum, 540 nm, emission anisotropy at 460 nm, 0.30, and fluorescence lifetime, gamma = lns) are indistinguishable from those of the ATP analogue bound to the native enzyme. The fragment of 16 kDa does not bind trinitrophenyl-ATP. The results are consistent with the hypothesis that monomeric pyridoxal kinase is folded into 2 domains connected by a single polypeptide chain sensitive to proteolytic cleavage.  相似文献   

8.
The ATPase core of a clathrin uncoating protein   总被引:33,自引:0,他引:33  
Chymotryptic digestion of bovine brain uncoating ATPase produced a 60-kDa fragment that was subsequently proteolyzed to 44 kDa. Loss of clathrin cage uncoating activity paralleled the conversion of the intact 70-kDa enzyme to the 60-kDa fragment, while clathrin binding activity was lost as the 60-kDa fragment was degraded to 44 kDa. This 44-kDa fragment has been purified to homogeneity and characterized as a clathrin-independent ATPase. The 44-kDa ATPase domain has been localized within the intact enzyme by the use of amino-terminal specific antibodies. This localization relates to the conserved nature of the 70-kDa heat shock protein family, of which bovine brain uncoating ATPase is a constitutively expressed member.  相似文献   

9.
Cultured neurons from rat embryo striatum were found to contain two structurally distinct forms of pp60c-src. The 60-kilodalton (kDa) form appeared similar to pp60c-src from cultured rat fibroblasts or astrocytes. The 61-kDa form was specific to neurons and differed in the NH2-terminal 18 kDa of the molecule. In undifferentiated neurons the predominant phosphorylated species of pp60c-src was the fibroblast form. Upon differentiation, a second phosphorylated form of pp60c-src was detected. This form had two or more additional sites of serine phosphorylation within the NH2-terminal 18-kDa region of the molecule, one of which was Ser-12. The specific protein-tyrosine kinase activity of the total pp60c-src population increased 14-fold, as measured by autophosphorylation, or 7-fold, as measured by phosphorylation of an exogenous substrate, as striatal neurons differentiated. This elevation in protein kinase activity occurred without a detectable decrease in Tyr-527 phosphorylation or increase in Tyr-416 phosphorylation. Our results support the idea that the expression of the neuron-specific form of pp60c-src and the increase in specific protein kinase activity may be important for neuronal differentiation.  相似文献   

10.
11.
The Hodgkin-associated Ki-1 antigen occurs in two different molecular forms. The 120-kDa membrane-associated form is a phosphorylated glycoprotein, which is derived from a non-phosphorylated intracellular 84-kDa apoprotein that is co-translationally N-glycosylated with a carbohydrate portion of 6 kDa. The other form of the Ki-1 antigen is a non-glycosylated phosphoprotein of 57 kDa which only occurs intracellularly. Both forms of the antigen are phosphorylated at serine residues. Enzymatic cleavage with sialidase reduced the 120-kDa membrane antigen by about 15 kDa, while its 90-kDa precursor and the 57-kDa intracellular form of the Ki-1 antigen remained unaltered. Pulse-chase experiments revealed that the 57-kDa and 90/120-kDa molecules are synthesized independently of each other. Four to eight hours after synthesis, the degradation of the 120-kDa molecule to a 105-kDa membrane-associated intermediate begins. This is further processed and appears in the cell supernate as a 90-kDa molecule. Hodgkin's disease-derived, Epstein-Barr virus-transformed cell lines and the acute T cell leukemia line MOLT-4 contain both forms of the Ki-1 antigen, whereas only the 57-kDa intracellular antigen is expressed in U266/B1 myeloma cells, in the Burkitt lymphoma cell lines Raji and Daudi and in acute promyelocytic HL-60 leukemia cells.  相似文献   

12.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

13.
Formyl peptide chemotactic receptors affinity-labeled with N-formyl-Nle-Leu-Phe-Nle-[125I]iodo-Tyr-Lys (where Nle represents norleucine) and ethylene glycol bis(succinimidyl succinate) consist of two isoelectric forms with cell type differences in both apparent size and charge (neutrophils: 55-70 kDa, pI 5.8, and 6.2.; monocytes: 60-75 kDa, pI 5.6 and 6.0; differentiated HL-60 cells: 62-85 kDa, pI 5.6 and 6.0). Endo-beta-N-acetylglucosaminidase F (endo F) cleavage of N-linked oligosaccharides from formyl peptide receptor generates 40-50- and 33-kDa products that can be affinity-labeled. Whereas both pI forms of this receptor from neutrophils are cleaved by endo F to 33-kDa final products, this cleavage does not eliminate pI differences. Tunicamycin decreases expression of formyl peptide receptor on differentiating HL-60 and causes a dose-dependent decrease in size of the major product seen after affinity labeling (0.5 micrograms/ml: 38-48 kDa; 2 micrograms/ml: 32 kDa). Thus, the formyl peptide receptor polypeptide backbone from all three cell types contains at least two N-linked oligosaccharide side chains which contribute to the cell type differences in Mr and are not required for ligand binding. Papain treatment of intact cells generates a membrane-bound formyl peptide receptor fragment that can be affinity-labeled and is of similar size (29-31 kDa) in all three cell types. Endo F treatment of the affinity-labeled papain fragment of formyl peptide receptor does not alter its size, suggesting that this fragment does not contain the N-linked oligosaccharide cleaved by endo F from intact receptor. The results indicate that at least two N-linked oligosaccharide chains are located on the distal 1-3-kDa portion of the receptor polypeptide backbone.  相似文献   

14.
A protein exhibiting only enoyl-CoA hydratase (EC 4.2.1.17) activity was purified from an n- alkane-grown yeast, Candida tropicalis. This enzyme had a homotetrameric form composed of subunits with a molecular mass of 36kDa. On the other hand, a bifunctional enzyme exhibiting enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities was obtained from the same yeast cells when purified in the presence of protease inhibitors, phenylmethylsulfonyl fluoride, antipain and chymostatin. The enzyme had a molecular mass of 105 kDa and was a monomeric form. Limited proteolysis of the bifunctional enzyme with α-chymotrypsin yielded a peptide mixture containing a 36 kDa fragment, the mixture showing about 76% of the original enoyl-CoA hydratase activity but no 3-hydroxyacyl-CoA dehydrogenase activity. Comparison of the peptide maps of the purified enoyl-CoA hydratase and the 36 kDa fragment obtained from the bifunctional enzyme showed the similarity of these proteins. These results strongly suggest that the domain of enoyl-CoA hydratase is separable from the bifunctional enzyme through the action of a certain protease.  相似文献   

15.
There is considerable evidence for the existence of structural variants of growth hormone (GH). The chicken is a useful model for investigating GH heterogeneity as both size and charge immunoreactive-(ir) variants have been observed in the pituitary and plasma. The present study examined the size distribution of ir-GH in the pituitary gland of chicken, from late embryogenesis through adulthood. Pituitaries were homogenized in the presence of protease inhibitor, and the GH size variants were separated by SDS-PAGE, transferred by Western blotting, immunostained with a specific antiserum to chicken GH, and quantitated by chemiluminescence followed by laser densitometry (chemiluminescent assay). Under nonreducing conditions ir-GH bands of 15, 22, 25, 44, 50, 66, 80, 98, 105 and >110 kDa were observed. Both the relative proportion of the GH size variants and the total pituitary content varied with developmental stage and age. The proportion of the 15-kDa fragment was greatest in the embryonic stage, and then it decreased. The proportion of the monomeric 22-kDa form was lowest at 18 days of embryogenesis (dE) and highest at 20 dE. In contrast, the high MW forms (>/=66 kDa) were lowest in embryos, and they increased (P < 0.05) after hatching. The 22-, 44-, 66-, and 80-kDa forms were assayed for activity by radioreceptor assay following isolation by semipreparative SDS-PAGE. Only the 22-kDa GH variant showed radioreceptor activity. Under reducing conditions for SDS-PAGE, ir-GH bands of 13, 15, 18, 23, 26, 36, 39, 44, 48, 59 and 72 kDa were oberved, but most of the high MW form disappeared. There was a concomitant increase in the proportion of the monomeric band and of several submonomeric forms. The present data indicate that the expression, processing, and/or release of some if not all size variants are under some differential control during growth and development of the chicken.  相似文献   

16.
Two soluble cAMP-dependent protein kinases were purified from the cytoplasm of Paramecium tetraurelia. Both kinases consisted of a 40-kDa catalytic subunit and a 44-kDa regulatory subunit. The two forms of the enzyme were separated by anion-exchange chromatography. Affinity chromatography on cAMP-Sepharose separated the regulatory subunit (retained by the column) from the cAMP-independent catalytic subunit (not retained). Four classes of monoclonal antibodies were generated. One class was specific for the catalytic subunit of both cAMP-dependent protein kinases, and three classes recognized the regulatory subunit of both forms of the enzyme. Subunits of 40 and 44 kDa were detected on immunoblots of purified cilia and of crude cell extracts. In addition, one class of antibodies specific for the regulatory subunit detected a ciliary protein with a molecular mass of 48 kDa. The monoclonal antibodies did not recognize type I or type II cAMP-dependent protein kinase from rabbit muscle nor did they cross-react with proteins from several unicellular eucaryotes, with one exception: antibodies specific for the catalytic subunit recognized a 40-kDa protein of Tetrahymena pyriformis.  相似文献   

17.
Murine monoclonal IgG1 antibodies (MAb), designated Aq-11 and Aq-12, were prepared against the photoprotein aequorin from jelly fish. Aequorin is a calcium-sensitive photoprotein which consists of a single polypeptide chain, apoaequorin, and a functional chromophore, coelenterazine. Native aequorin consists of two species with molecular masses of 25 and 23.5 kDa. MAb Aq-12 was found by immunoblot analysis to bind specifically to the 25 kDa species, while MAb Aq-11 reacted with the 23.5 kDa protein. Activation of apoaequorin with coelenterazine was associated with a shift of the 23.5 kDa molecule to the 25 kDa species. In contrast, treatment with calcium ions induced a shift back to the 23.5 kDa form. These changes between the active and inactive forms were identified by reactivity with MAbs Aq-11 and Aq-12. The results thus indicate that these MAbs should be useful in monitoring activation of this photoprotein.  相似文献   

18.
Kalinin, a recently characterized novel protein component of anchoring filaments, has been shown to be involved in keratinocyte attachment to culture substrates and to dermis in vivo, and to exist in keratinocyte-conditioned culture medium in two heterotrimeric forms of 440 and 400 kDa (Rousselle, P., Lunstrum, G.P., Keene, D.R., and Burgeson, R.E. (1991) J. Cell Biol. 114, 567-576). This study demonstrates that kalinin is initially synthesized in a cell-associated form estimated to be 460 kDa. By second dimension reduced electrophoresis, V8 protease digestion, and immunoblot analysis, we demonstrate that the cell form contains nonidentical subunits of 200, 155, and 140 kDa. The 440-kDa medium form is derived from the cell form by extracellular processing of the 200-kDa subunit to 165 kDa, a step which also occurs in skin organ culture. The 400-kDa form is derived from the 440-kDa form by extracellular processing of the 155 kDa-subunit to 105 kDa. The cell form is secreted by keratinocytes, deposited onto culture substratum, and is the form which facilitates attachment and adhesion of growing and spreading keratinocytes. It is also the form initially synthesized in skin organ culture. Kalinin purified from tissue, which appears to facilitate epithelial-mesenchymal cohesion in vivo, is closely related to the 400-kDa medium form purified from culture.  相似文献   

19.
A 45-kDa human T cell surface glycoprotein which is tightly bound in the membrane of the resting T cell is released into the cell medium in soluble form after cell growth activation by phytohemagglutinin or neuraminidase/galactose oxidase treatments. In limited proteolysis by Staphylococcus aureus V8 protease, two major 35-kDa and 27-kDa peptide fragments of the surface-iodinated 45-kDa protein are common to the membrane-bound and the released forms, but a third 18-kDa fragment is observed exclusively with the released protein. The apparent molecular masses of the deglycosylated peptide backbones of the membrane-bound and the released molecule are 30 +/- 1 kDa, although a small size difference cannot be excluded. A polyclonal rabbit anti-(T cell membrane protein) antiserum precipitates the 45-kDa protein. A monoclonal anti-(45-kDa protein) antibody precipitates the membrane-bound 45-kDa protein solubilized with octyl glucoside, but does not precipitate the released protein. In cell culture assays, the monoclonal anti-(45-kDa protein) antibody specifically enhances the cell proliferative responses in phytohemagglutinin-treated and mixed lymphocyte cultures. These observations suggest that the 45-kDa protein has a specific receptor function in the regulation of cell proliferative responses.  相似文献   

20.
《BBA》1986,850(1):146-155
When the NaCl extract from spinach Photosystem II particles was dialyzed against a low-salt medium, the 18-kDa protein slowly degraded to a fragment of 17 kDa. This observation suggests that a proteinase previously associated with the Photosystem II particles in a latent form was activated by dissociation with NaCl. The 18-kDa protein and the 17-kDa fragment were purified, and their N-terminal amino acid sequences and total amino acid compositions were determined. These results determined 44 amino acid residues at the N-terminal of the 18-kDa protein, and suggest that 12 amino acid residues (mostly hydrophobic) at the N-terminal were lost by the degradation. The 18-kDa protein could rebind to the NaCl-treated and 24-kDa protein-supplemented Photosystem II particles and sustain their oxygen-evolution activity in a low-Cl medium, whereas the 17-kDa fragment had lost these abilities. These observations suggest that the N-terminal region of the 18-kDa protein forms a domain which binds to Photosystem II particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号