共查询到20条相似文献,搜索用时 0 毫秒
1.
The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We especially highlight the role of lipid rafts in apical sorting. 相似文献
2.
Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells 总被引:6,自引:0,他引:6
下载免费PDF全文

We have isolated a subcellular fraction of small vesicles (mean diameter, 300 nm) from frog photoreceptors, that accumulate newly synthesized rhodopsin with kinetics paralleling its appearance in post-Golgi membranes in vivo. This fraction is separated from other subcellular organelles including Golgi and plasma membranes and synaptic vesicles that are sorted to the opposite end of the photoreceptor cell. The vesicles have very low buoyant density in sucrose gradients (rho = 1.09 g/ml), a relatively simple protein content and an orientation of rhodopsin expected of transport membranes. Reversible inhibition of transport by brefeldin A provides evidence that these vesicles are exocytic carriers. Specific immunoadsorption bound vesicles whose protein composition was indistinguishable from the membranes sedimented from the subcellular fraction. Some of these proteins may be cotransported with rhodopsin to the rod outer segment; others may be involved in vectorial transport. 相似文献
3.
AP-1 and AP-3 mediate sorting of melanosomal and lysosomal membrane proteins into distinct post-Golgi trafficking pathways 总被引:1,自引:0,他引:1
Chapuy B Tikkanen R Mühlhausen C Wenzel D von Figura K Höning S 《Traffic (Copenhagen, Denmark)》2008,9(7):1157-1172
The adaptor complexes AP-1 and AP-3 are localized to endosomes and/or the trans Golgi network (TGN). Because of limitations in analysing intracellular adaptor function directly, their site of function is a matter of ongoing uncertainty. To overcome this problem and to analyse adaptor sorting at the TGN, we reconstituted vesicle formation from Golgi/TGN-enriched membranes in a novel in vitro budding assay. Melanocytes were metabolically labelled followed by a 19°C temperature block to accumulate newly synthesized proteins in Golgi membranes, which were then enriched by subcellular fractionation and used as donor membranes for vesicle formation in vitro . The incorporation of the melanosomal proteins tyrosinase and tyrosinase-related protein 1 (TRP-1) as well as Lamp-1 and 46 kDa mannose-6-phosphate receptor (MPR46) into Golgi/TGN-derived vesicles was temperature, nucleotide, cytosol, ADP ribosylation factor 1 and adaptor dependent. We show that sorting of TRP-1 and MPR46 was AP-1 dependent, while budding of tyrosinase and Lamp-1 required AP-3. Depletion of clathrin inhibited sorting of all four cargo proteins, suggesting that AP-1 and AP-3 are involved in the formation of distinct types of clathrin-coated vesicles, each of which is characterized by the incorporation of specific cargo membrane proteins. 相似文献
4.
Background
The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging.Methodology/Principal Findings
A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells.Conclusions/Significance
We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470–1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging. 相似文献5.
Despite recent advances, the mechanisms of RNA movements and targeting within the nucleus are still mysterious. While diffusion appears to play a crucial role in nuclear dynamics and RNA transport, some data argue for a model in which diffusion is controlled, at least in part, by the organization of the nucleus in well-defined compartments. Much of the recent progress is based on imaging technologies, and this review will first present them in some detail. We will then summarize studies that analyzed nuclear movements of both polyadenylated RNA and box C/D snoRNP. Indeed, this latter model has already brought a number of interesting results. We will finally present some of our original results on box C/D snoRNA transport. 相似文献
6.
Ilegems E Pick HM Deluz C Kellenberger S Vogel H 《The Journal of biological chemistry》2004,279(51):53346-53352
Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking. 相似文献
7.
8.
Mathilde Chaineau 《FEBS letters》2009,583(23):3817-5
SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are the core machinery of membrane fusion. Vesicular SNAREs (v-SNAREs) interact with their target SNAREs (t-SNAREs) to form SNARE complexes which mediate membrane fusion. Here we review the basic properties and functions of the v-SNARE TI-VAMP/VAMP7 (Tetanus neurotoxin insensitive-vesicle associated membrane protein). TI-VAMP interacts with its t-SNARE partners, particularly plasmalemmal syntaxins, to mediate membrane fusion and with several regulatory proteins especially via its amino-terminal regulatory Longin domain. Partners include AP-3, Hrb/(Human immunodeficiency virus Rev binding) protein, and Varp (Vps9 domain and ankyrin repeats containing protein) and regulate TI-VAMP’s function and targeting. TI-VAMP is involved both in secretory and endocytic pathways which mediate neurite outgrowth and synaptic transmission, plasma membrane remodeling and lysosomal secretion. 相似文献
9.
Newly synthesized membrane proteins are sorted in the trans-Golgi network (TGN) on the basis of sorting signals carried in their cytoplasmic domains and delivered to their final destinations in the secretory and endocytic pathways. Although previous studies have suggested the involvement of early endosomes in the biosynthetic pathway of transmembrane proteins, the precise trafficking routes followed by the newly synthesized plasma membrane proteins, such as transferrin receptors (TfRs), after exit from the TGN remain unclear. In this report, first, we demonstrated the advantages of photoactivating PA-GFP, a variant of the Aequorea victoria green fluorescent protein (GFP), with multiphoton laser light rather than single-photon laser light, in terms of photoactivation efficiency and spatial resolution. We then applied the multiphoton photoactivation technique to selectively photoactivate the TfR tagged with PA-GFP (PA-GFP-TfR) at the TGN, and monitored the movement of the photoactivated PA-GFP-TfR in live cells. We observed that the PA-GFP-TfR photoactivated at the TGN are transported to the Tfn(+)EEA1(+) endosomal compartments after exiting the TGN. These data support the notion that early endosomes can serve as a sorting station for not only internalized plasma membrane proteins in the endocytic pathway but also newly synthesized membrane proteins in the post-Golgi secretory pathway. 相似文献
10.
Rat prothyrotropin-releasing hormone (pro-TRH) is endoproteolyzed within the regulated secretory pathway of neuroendocrine cells yielding five TRH peptides and seven to nine other unique peptides. Endoproteolysis is performed by two prohormone convertases, PC1 and PC2. Proteolysis of pro-TRH begins in the trans-Golgi network and forms two intermediates that are then differentially processed as they exit the Golgi and are packaged into immature secretory granules. We hypothesized that this initial endoproteolysis may be necessary for downstream sorting of pro-TRH-derived peptides as it occurs before Golgi exit and thus entry into the regulated secretory pathway. We now report that when pro-TRH is transiently expressed in GH4C1 cells, a neuroendocrine cell line lacking PC1, under pulse-chase conditions release is constitutive and composed of more immature processing intermediates. This is also observed by radioimmunoassay under steady-state conditions. When a mutant form of pro-TRH, which has the dibasic sites of initial processing mutated to glycines, is expressed in AtT20 cells, a neuroendocrine cell line endogenously expressing PC1, both steady-state and pulse-chase experiments revealed that peptides derived from this mutant precursor are secreted in a constitutive fashion. A constitutively secreted form of PC1 does not target pro-TRH peptides to the constitutive secretory pathway but results in sorting to the regulated secretory pathway. These results indicated that initial processing action of PC1 on pro-TRH in the trans-Golgi network, and not a cargo-receptor relationship, is important for the downstream sorting events that result in storage of pro-TRH-derived peptides in mature secretory granules. 相似文献
11.
Wasmeier C Romao M Plowright L Bennett DC Raposo G Seabra MC 《The Journal of cell biology》2006,175(2):271-281
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype chocolate (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles. 相似文献
12.
A recent model proposed that N-glycans serve as apical targeting signals for soluble and membrane proteins in epithelial cells and neurons by interacting with lectin sorters in the trans-Golgi network. However, we believe that a number of experimental observations support an alternative hypothesis, that N-glycans play a facilitative role, by providing structural support or preventing aggregation of the proteins for example, thereby allowing interaction of proteinaceous apical sorting signals with the sorting machinery. This article discusses the experimental data currently available and how they relate to the proposed models. 相似文献
13.
Fluorescent resonance energy transfer (FRET) imaging techniques can be used to visualize protein-protein interactions in real-time with subcellular resolution. Imaging of sensitized fluorescence of the acceptor, elicited during excitation of the donor, is becoming the most popular method for live FRET (3-cube imaging) because it is fast, nondestructive, and applicable to existing widefield or confocal microscopes. Most sensitized emission-based FRET indices respond nonlinearly to changes in the degree of molecular interaction and depend on the optical parameters of the imaging system. This makes it difficult to evaluate and compare FRET imaging data between laboratories. Furthermore, photobleaching poses a problem for FRET imaging in timelapse experiments and three-dimensional reconstructions. We present a 3-cube FRET imaging method, E-FRET, which overcomes both of these obstacles. E-FRET bridges the gap between the donor recovery after acceptor photobleaching technique (which allows absolute measurements of FRET efficiency, E, but is not suitable for living cells), and the sensitized-emission FRET indices (which reflect FRET in living cells but lack the quantitation and clarity of E). With E-FRET, we visualize FRET in terms of true FRET efficiency images (E), which correlate linearly with the degree of donor interaction. We have defined procedures to incorporate photobleaching correction into E-FRET imaging. We demonstrate the benefits of E-FRET with photobleaching correction for timelapse and three-dimensional imaging of protein-protein interactions in the immunological synapse in living T-cells. 相似文献
14.
Neubrand VE Will RD Möbius W Poustka A Wiemann S Schu P Dotti CG Pepperkok R Simpson JC 《The EMBO journal》2005,24(6):1122-1133
A novel peripheral membrane protein (2c18) that interacts directly with the gamma 'ear' domain of the adaptor protein complex 1 (AP-1) in vitro and in vivo is described. Ultrastructural analysis demonstrates a colocalization of 2c18 and gamma1-adaptin at the trans-Golgi network (TGN) and on vesicular profiles. Overexpression of 2c18 increases the fraction of membrane-bound gamma1-adaptin and inhibits its release from membranes in response to brefeldin A. Knockdown of 2c18 reduces the steady-state levels of gamma1-adaptin on membranes. Overexpression or downregulation of 2c18 leads to an increased secretion of the lysosomal hydrolase cathepsin D, which is sorted by the mannose-6-phosphate receptor at the TGN, which itself involves AP-1 function for trafficking between the TGN and endosomes. This suggests that the direct interaction of 2c18 and gamma1-adaptin is crucial for membrane association and thus the function of the AP-1 complex in living cells. We propose to name this protein gamma-BAR. 相似文献
15.
The trafficking of alpha 1-antitrypsin,a post-Golgi secretory pathway marker,in INS-1 pancreatic beta cells 总被引:1,自引:0,他引:1
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes. 相似文献
16.
We report super-resolution fluorescence imaging of live cells with high spatiotemporal resolution using stochastic optical reconstruction microscopy (STORM). By labeling proteins either directly or via SNAP tags with photoswitchable dyes, we obtained two-dimensional (2D) and 3D super-resolution images of living cells, using clathrin-coated pits and the transferrin cargo as model systems. Bright, fast-switching probes enabled us to achieve 2D imaging at spatial resolutions of ~25 nm and temporal resolutions as fast as 0.5 s. We also demonstrated live-cell 3D super-resolution imaging. We obtained 3D spatial resolution of ~30 nm in the lateral direction and ~50 nm in the axial direction at time resolutions as fast as 1-2 s with several independent snapshots. Using photoswitchable dyes with distinct emission wavelengths, we also demonstrated two-color 3D super-resolution imaging in live cells. These imaging capabilities open a new window for characterizing cellular structures in living cells at the ultrastructural level. 相似文献
17.
Adaptor protein (AP) complexes are cytosolic heterotetramers that mediate the sorting of membrane proteins in the secretory and endocytic pathways. AP complexes are involved in the formation of clathrin-coated vesicles (CCVs) by recruiting the scaffold protein, clathrin. AP complexes also play a pivotal role in the cargo selection by recognizing the sorting signals within the cytoplasmic tail of integral membrane proteins. Six distinct AP complexes have been identified. AP-2 mediates endocytosis from the plasma membrane, while AP-1, AP-3 and AP-4 play a role in the endosomal/lysosomal sorting pathways. Moreover, tissue-specific sorting events such as the basolateral sorting in polarized epithelial cells and the biogenesis of specialized organelles including melanosomes and synaptic vesicles are also regulated by members of AP complexes. The application of a variety of methodologies have gradually revealed the physiological role of AP complexes. 相似文献
18.
LI Mi LIU LianQing XI Ning WANG YueChao DONG ZaiLi XIAO XiuBin ZHANG WeiJing 《中国科学:生命科学英文版》2013,56(9):811-817
Atomic force microscopy (AFM) was used to examine the morphology of live mammalian adherent and suspended cells. Time-lapse AFM was used to record the locomotion dynamics of MCF-7 and Neuro-2a cells. When a MCF-7 cell retracted, many small sawtooth-like filopodia formed and reorganized, and the thickness of cellular lamellipodium increased as the retraction progressed. In elongated Neuro-2a cells, the cytoskeleton reorganized from an irregular to a parallel, linear morphology. Suspended mammalian cells were immobilized by method combining polydimethylsiloxane-fabricated wells with poly-L-lysine electrostatic adsorption. In this way, the morphology of a single live lymphoma cell was imaged by AFM. The experimental results can improve our understanding of cell locomotion and may lead to improved immobilization strategies. 相似文献
19.
Raman spectroscopy has been used to identify and locate beta-carotene within individual living luteal cells. The cells were either freshly prepared or cultured; the latter was incubated in the presence or absence of beta-carotene in the form of enriched bovine high-density lipoprotein. Luteal cells were investigated using several Raman spectroscopic and imaging techniques. These techniques did not give accurate concentration levels of beta-carotene within parts of the cell but illustrated the distribution of the molecule. Freshly prepared luteal cells were found to contain an appreciable concentration of beta-carotene. Over a period of several days, the concentration gradually reduced to a nearly undetectable level; similar results were found for cells cultured in the absence of the beta-carotene. For cells cultured in the presence of beta-carotene, the molecular concentration was maintained for as long as 2 weeks. The Raman spectra of fragmented cells showed that the beta-carotene is predominantly localised in the lipid-rich cell components, with the concentration highest in the microsomal fraction. The Raman imaging techniques revealed that beta-carotene was spread over the entire volume of the luteal cells with higher levels occurring at distinct sites, including the surface. 相似文献
20.
In developing Drosophila photoreceptors, rhodopsin is trafficked to the rhabdomere, a specialized domain within the apical membrane surface. Rab11, a small GTPase implicated in membrane traffic, immunolocalizes to the trans-Golgi network, cytoplasmic vesicles and tubules, and the base of rhabdomeres. One hour after release from the endoplasmic reticulum, rhodopsin colocalizes with Rab11 in vesicles at the base of the rhabdomere. When Rab11 activity is reduced by three different genetic procedures, rhabdomere morphogenesis is inhibited and rhodopsin-bearing vesicles proliferate within the cytosol. Rab11 activity is also essential for development of MVB endosomal compartments; this is probably a secondary consequence of impaired rhabdomere development. Furthermore, Rab11 is required for transport of TRP, another rhabdomeric protein, and for development of specialized membrane structures within Garland cells. These results establish a role for Rab11 in the post-Golgi transport of rhodopsin and of other proteins to the rhabdomeric membranes of photoreceptors, and in analogous transport processes in other cells. 相似文献