首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weanling female rats raised on a fat-free diet for 8 weeks were then given the same diet supplemented with 0, 0.25, 0.5, or 1% by weight of cholesterol in addition to 10% of safflower oil for 3 days. Fatty acid compositions of cholesteryl esters (CE), triglycerides (TG), and phospholipids (PL) in liver and plasma were examined. Cholesterol feeding increased plasma and liver cholesterol contents and also affected the patterns of n-6 polyunsaturated fatty acids. There were no consistent changes in either plasma and liver TG which contained little 20:3n-6 and 20:4n-6. The levels of 20:3n-6 increased in plasma and liver PL, while proportions of 20:4n-6 decreased in liver and plasma CE. However, the absolute amount of 20:4n-6 in cholesteryl esters increased because of a threefold rise in cholesteryl ester levels. The changes might be attributable to an increased utilization of 20:4n-6 for cholesterol transport and/or an inhibition of delta 5-desaturation of n-6 fatty acids by cholesterol feeding.  相似文献   

2.
The changes induced by dietary n-3 fatty acids (FA) in the lipids and FA of plasma, liver and blood cells, and their reversibility, was studied in mice given a diet containing 9% fish oil (FO) for 2 weeks and then returned to, and kept for another 2 weeks on, the usual standard lab chow diet. In plasma, the concentrations of phospholipids (PL), mostly phosphatidylcholine (PC), triacylglycerols (TG), cholesterol and cholesterol esters (CE) decreased rapidly after starting the FO diet, and remained low from day 3 onwards. This decrease was concomitant with a remarkable reduction in the n-6 FA, especially 18:2n-6, not compensated for by the relative enrichment in n-3 FA induced by FO. In liver, TG and CE decreased and PL slightly increased, all of them showing reduced n-6/n-3 ratios. Sphingomyelin, which lacks polyunsaturated FA other than small amounts of 18:2 and 24:2n-6, showed altered ratios between its very long chain monoenes and saturates. In the washout phase, the most rapid event was an immediate increase in 18:2n-6 and after a few days in 20:4n-6 in plasma and liver, where most of the lipid and FA changes were reversed completely in about 10 days. In the case of blood cells even 2 weeks were insufficient for a reversal to the initial n-6/n-3 ratios. The lipid class responsible for this lack of reversibility was phosphatidylethanolamine, PC having returned to the initial fatty acid composition during the stated period.  相似文献   

3.
Previous studies suggest that consuming meals containing large amounts of fish oil is associated with selective postprandial incorporation of 20:5n-3 and 22:6n-3 into plasma non-esterified fatty acids (NEFA). We investigated the effect of consuming meals containing different amounts of 20:5n-3 and 22:6n-3 comparable to dietary habits of western populations on the postprandial incorporation of 18:3n-3, 20:5n-3 and 22:6n-3 into plasma triacylglycerol (TAG) and NEFA over 6h in middle aged subjects. 20:5n-3 incorporation into plasma TAG was greater than 22:6n-3 irrespective of the test meal. Conversely, 22:6n-3 incorporation into plasma NEFA was greater than 20:5n-3, irrespective of the test meal. There was no effect of the amount of 20:5n-3+22:6n-3 in the test meal on the 18:3n-3 incorporation into plasma TAG or NEFA. These findings suggest differential metabolism of 20:5n-3 and 22:6n-3 in the postprandial period when consumed in amounts typical of western dietary habits.  相似文献   

4.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

5.
Plasma levels of n-3 long chain polyunsaturated fatty acids (LCPUFA) are associated with a reduction in risk of cardiovascular disease and other chronic, age-related diseases like Alzheimer's disease. In this work, we tested the hypothesis that n-3 LCPUFA fatty acids in human plasma are incorporated into selective lipid species following intake of n-3 LCPUFA rich marine fish. To test this hypothesis, we performed lipidomic analysis on plasma samples from a clinical trial in which participants consumed increasing amounts of farmed Atlantic salmon (Salmo salar). Under basal conditions, n-3 and n-6 LCPUFA were selectively incorporated into plasma phosphatidylcholine (PC) species containing saturated fatty acids (SFA) versus unsaturated fatty acids as the complementary fatty acids. LCPUFA were incorporated into selective triacylglycerol (TAG) species with complementary diacylglyceryl environments of 34:1 or 34:2 (for 20:5 and 22:5) and 36:2>36:3>36:4 and 36:1 (for 20:4 and 22:6). High n-3 LCPUFA marine fish intake resulted in selective increases of PC SFA_n-3 LCPUFA species and LCPUFA-containing TAG species. Changes in cholesteryl esters and phosphatidylethanolamines also occurred following fish intake. Our results highlight the importance of discriminating phospholipid and TAG species and dietary background when evaluating lipidomic outcomes and disease associations.  相似文献   

6.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

7.
Several studies have shown that major depression is accompanied by alterations in serum fatty acid composition, e.g. reduced n-3 fatty acids and an increased 20:4n-6/20:5n-3 ratio in serum. Moreover, pregnancy leads to depletion of maternal serum 22:6n-3 and after delivery maternal serum 22:6n-3 steadily declines further. Therefore, the aim of the present study was to investigate whether the postpartum fatty acid profile of maternal serum phospholipids (PL) and cholesteryl esters (CE) differs in women who develop postpartum depression compared to controls. We compared the fatty acid composition shortly after delivery of 10 women who developed postpartum depression and 38 women who did not. After delivery, 22:6n-3 and the sum of the n-3 fatty acids in PL and CE was significantly lower in the group of mothers who developed a postpartum depression. The ratio of Sigman-6/Sigman-3 fatty acids in PL was, postpartum, significantly higher in the depressed group as compared to the controls. The abnormalities in fatty acid status previously observed in major depression are now also confirmed in postpartum depression. These results indicate that pregnant women who are at risk to develop postpartum depression may benefit from a prophylactic treatment with n-3 PUFAs, such as a combination of 20:5n-3 and 22:6n-3.  相似文献   

8.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

9.
There is currently little information regarding the metabolic fates of yolk lipid and individual fatty acids during embryonic development of free-living avian species. Here we report the pattern of lipid utilization during embryonic development of the coot (Fulica atra) and the moorhen (Gallinula chloropus), two related species producing precocial offspring from eggs with a distinctive fatty acid composition and with an incubation period similar to that of the chicken. By the time of hatching, the proportions of the initial yolk lipid that had been transferred to the embryo were 88.2% and 79.8% for the coot and moorhen respectively. During the whole incubation period, 42.9% and 40.0% of the initial yolk lipid of the coot and moorhen respectively were lost from the system due to oxidation for energy, equating to 47.8% and 50.0% respectively of the actual amount of lipid transferred over this time. Thus, the lipid received by the embryos of both species is partitioned almost equally between the alternative fates of energy metabolism and incorporation into tissue lipids. In the coot, this 50:50 split between oxidation and tissue formation was maintained during the hatching process. The proportions of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) in the yolk lipids of these species were 2.5-3.5 times higher than in eggs of domestic poultry. In contrast to the situation in the chicken, there was no preferential uptake of 22:6n-3 from the yolk during coot and moorhen development. The fatty acid compositions of the whole body lipids of the coot and moorhen hatchlings were almost identical to those of the initial yolks indicating that, unlike the chicken, these species display relatively little overall biomagnification of 20:4n-6 and 22:6n-6 during development. It is suggested that the yolk fatty acid profiles of the coot and moorhen are particularly well matched to the requirements of the embryo, reducing the need for selective uptake of 22:6n-3 and for the overall biomagnification of 22:6n-3 and 20:4n-6.  相似文献   

10.
Energy metabolism during embryonic development of snakes differs in several respects from the patterns displayed by other reptiles. There are, however, no previous reports describing the main energy source for development, the yolk lipids, in snake eggs. There is also no information on the distribution of yolk fatty acids to the tissues during snake development. In eggs of the water python (Liasis fuscus), we report that triacylglycerol, phospholipid, cholesteryl ester and free cholesterol, respectively, form 70.3%, 14.1%, 5.7% and 2.1% of the total lipid. The main polyunsaturate of the yolk lipid classes is 18:2n-6. The yolk phospholipid contains 20:4n-6 and 22:6n-3 at 13.0% and 3.6% (w/w), respectively. Approximately 10% and 30% of the initial egg lipids are respectively recovered in the residual yolk and the fat body of the hatchling. A major function of yolk lipid is, therefore, to provision the neonate with large energy reserves. The proportion of 22:6n-3 in brain phospholipid of the hatchling is 11.1% (w/w): this represents only 0.24% of the amount of 22:6n-3 originally present in the egg. This also contrasts with values for free-living avian species where the proportion of DHA in neonatal brain phospholipid is 16–19%. In the liver of the newly hatched python, triacylglycerol, phospholipid and cholesteryl ester, respectively, form 68.2%, 7.7% and 14.3% of total lipid. This contrasts with embryos of birds where cholesteryl ester forms up to 80% of total liver lipid and suggests that the mechanism of lipid transfer in the water python embryo differs in some respects from the avian situation.Abbreviations ARA arachidonic acid - DHA docosahexaenoic acidCommunicated by G. Heldmaier  相似文献   

11.
We compared the lipid content and fatty acid composition of (1) the egg yolk of three anuran species (Chirixalus eiffingeri, Rhacophorus moltrechti and Buergeria robustus) and chicken eggs; and (2) C. eiffingeri tadpoles fed conspecific eggs or chicken egg yolk. Anuran and chicken egg yolk contained more non-polar than polar lipids but the proportions varied among species. Chicken egg yolk contained low amounts of 22:5n-3 in the polar lipid fraction, and B. robustus eggs did not contain any n-3 or n-6 non-polar lipids. The specific variation of lipid contents and fatty acid composition may relate to the maternal diet and/or breeding biology. In C. eiffingeri tadpoles that fed chicken yolk or frog egg yolk, the dominant components of polar and non-polar lipids were 16:0, 18:0, 18:1, and 18:2n-6, or 20:4n-6 fatty acids. C. eiffingeri eggs contained more n-3 fatty acids (e.g. 18:3n-3 and 20:5n-3) than chicken egg yolk, and tadpoles fed conspecific eggs contained more of these fatty acids than tadpoles fed chicken egg yolk. The compositional differences in the fatty acids between C. eiffingeri tadpoles that fed frog egg or chicken egg yolk are the reflection of the variation in the dietary sources. Our results suggest a direct incorporation of fatty acids into the body without or minimal modification, which provide an important insight into the physiological aspects of cannibalism.  相似文献   

12.
The fatty acid composition of serum phospholipids (PL) and cholesteryl esters (CE) in 26 healthy pregnant women at the end of term and 1 and 3 days after delivery was analysed in order to determine whether the maternal serum fatty acid composition changes in the early puerperium. The composition of the saturated fatty acids significantly changes in the PL fraction: 16:0 decreased and 18:0 increased. Both 20:4n-6 and 20:5 n-3 significantly increased after parturition in serum PL while 22:6n-3 remained constant at the three sampling time points. The sum of HUFA was slightly higher 3 days postpartum compared to the prepartum data. The essential fatty acid index significantly increased after delivery. In the CE fraction too differences occurred during puerperium: 18:2n-6 and 20:4n-6 increased and 18:1n-9 decreased after parturition. The sum of the n-3 fatty acids in CE remained unaltered. The EFA index significantly improved both in PL as in CE after delivery.In conclusion, the previously reported changes in the fatty acid composition of PL and CE during normal pregnancy diminish shortly after delivery. In fact, very soon after delivery the maternal fatty acid composition returns to more normal values.  相似文献   

13.
The influences of diets having different fatty acid compositions on the fatty-acid content, desaturase activities, and membrane fluidity of rat liver microsomes have been analyzed. Weanling male rats (35–45 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) marine fish oil (FO, 12.7% docosahexaenoic acid and 13.8% eicosapentaenoic acid), evening primrose oil (EPO, 7.8% γ-linolenic acid and 70.8% linoleic acid) or a mixture of 5% FO-5% EPO. After 12 weeks on the respective diets, animals fed higher proportions of (n-3) polyunsaturated fatty acids (FO group) consistently contained higher levels of 20:3(n-6), 20:5(n-3), 22:5(n-3), and 22:6(n-3), and lower levels of 18:2(n-6) and 20:4(n-6), than those of the EPO (a rich source of (n-6) polyunsaturated fatty acids) or the FO + EPO groups. Membrane fluidity, as estimated by the reciprocal of the order parameter SDPH, was higher in the FO than in the EPO or the FO + EPO groups, and the n-6 fatty-acid desaturation system was markedly affected.  相似文献   

14.
Two separate experiments examining the effects of calcium deficiency on plasma and liver fatty acids in rats were conducted. In Experiment I, weanling male Sprague-Dawley rats were fed a calcium-deficient diet with or without the supplementation of 5 or 20 g/kg calcium for 22 days. There were no significant differences in plasma and liver fatty acid distribution between the two calcium-supplemented groups. However, calcium deficiency significantly elevated the levels of 18:3n-6 in plasma and liver cholesteryl esters and liver phospholipids, while it reduced the levels of 20:3n-6 in plasma cholesteryl esters. In Experiment II, weanling rats were fed a calcium-deficient diet supplemented with 5 g/kg calcium for 22 days. After overnight fast, animals were given by intragastric feeding a dose of 4 g/kg body wt gamma-linolenic acid concentrate (containing 92% 18:3n-6 ethyl ester), and were killed 22 hr later. The levels of 18:3n-6 were significantly higher, whereas the levels of 20:3n-6 were either not changed or lower than those in calcium-supplemented group. In both experiments, the ratios of (20:3n-6 + 20:4n-6)/18:3n-6 in plasma and liver lipids were significantly reduced in calcium-deficient rats. These results suggest that calcium may play an important and specific role in the process of elongation of 18:3n-6 to 20:3n-6.  相似文献   

15.
Although substantial information is available regarding the fatty acid composition of lipids of the yolk and of the developing tissues of the chicken embryo, there is little knowledge on this topic for other avian species. The aim of the present study was to compare the yolk and embryonic tissue fatty acid profiles for a species selecting its food in the wild (the lesser black backed gull) with one fed on a standard commercial diet (the commercially reared pheasant). The fatty acid compositions of the yolk lipids were determined, and major differences were observed between the two species. In particular, the phospholipid of the gull yolk was enriched in 20:4n-6 and 22:6n-3 (18.8 and 7.1%, respectively, by weight of total fatty acids) in comparison with the pheasant (4.0 and 4.1%, respectively). The fatty acid compositions of the embryonic tissues were determined using eggs incubated in the laboratory. For the liver and heart, the fatty acid composition of the lipids in the two species reflected the initial yolk composition, with the gull tissue lipids generally containing higher proportions of 20:4n-6 and 22:6n-3 than those of the pheasant. In contrast, the fatty acid profiles of the brain phospholipid were essentially identical in the two species, with 20:4n-6 and 22:6n-3 comprising approximately 9 and 17%, respectively, of total fatty acids in both cases.  相似文献   

16.
About 50% of the fatty acids in retinal rod outer segments is docosahexaenoic acid [22:6(n-3)], a member of the linolenic acid [18:3(n-3)] family of essential fatty acids. Dietary deprivation of n-3 fatty acids leads to only modest changes in 22:6(n-3) levels in the retina. We investigated the mechanism(s) by which the retina conserves 22:6(n-3) during n-3 fatty acid deficiency. Weanling rats were fed diets containing 10% (wt/wt) hydrogenated coconut oil (no n-3 or n-6 fatty acids), linseed oil (high n-3, low n-6), or safflower oil (high n-6, less than 0.1% n-3) for 15 weeks. The turnover of phospholipid molecular species and the turnover and recycling of 22:6(n-3) in phospholipids of the rod outer segment membranes were examined after the intravitreal injection of [2-3H]glycerol and [4,5-3H]22:6(n-3), respectively. Animals were killed on selected days, and rod outer segment membranes, liver, and plasma were taken for lipid analyses. The half-lives (days) of individual phospholipid molecular species and total phospholipid 22:6(n-3) were calculated from the slopes of the regression lines of log specific activity versus time. There were no differences in the turnover rates of phospholipid molecular species among the three dietary groups, as determined by the disappearance of labeled glycerol. Thus, 22:6(n-3) is not conserved through a reduction in phospholipid turnover in rod outer segments. However, the half-life of [4,5-3H]22:6(n-3) in the linseed oil group (19 days) was significantly less than in the coconut oil (54 days) and safflower oil (not measurable) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

18.
The biochemical essential fatty acid (EFA) status of neonates born after normal and hypertensive pregnancies (PIH) and that of their mothers was assessed by measuring the fatty acid composition of phospholipids (PL), triglycerides (TG) and cholesterol esters (CE) of umbilical cord serum and maternal serum, respectively. Relative contents of linoleic acid of serum PL and CE were significantly lower in mothers with PIH compared to normal pregnancies. Most other (n-6) polyenes in PL tended to be higher under hypertensive conditions. Total maternal (n-3) polyenes of serum PL were significantly higher in PIH, mainly due to clupanodonic acid, 22:5 (n-3), and cervonic acid, 22:6 (n-3). Total maternal (n-7) and (n-9) fatty acids were also significantly higher in PIH (PL and CE). The results indicate that PIH is associated with a relative increased unsaturation of maternal serum PL, which might facilitate the placental transfer of long-chain, polyunsaturated fatty acids. As a result, the neonatal EFA status after PIH only slightly differs from normal.  相似文献   

19.
During the late postspawning phase, freshwater catfish Clarias batrachus fed a diet rich in linseed oil (18: 3 n-3) (LSO) and 13L : 11D photoperiod and at 28° C showed increases in ovarian weight and plasma levels of testosterone and oestradiol-17β, and in concentrations of free fatty acids (FFA), monoglycerides (MG), diglycerides (DG), triglycerides (TG), phospholipids (PL) and esterified cholesterol (CE) in the liver, plasma and ovary. In fish fed a diet rich in sunflower oil (18: 2 n-6) (SFO) under the same conditions, plasma testosterone decreased sharply, concentrations of FFA, DG and TG increased in the liver and plasma and ovarian levels of TG and CE decreased. Neither diet was gonadostimulatory when fed at 18°C.  相似文献   

20.
Rats were fed diets devoid of (n-3) fatty acids (olive oil supplementation) or high in (n-3) fatty acids (fish oil supplementation) for a period of 10 days. In spleen lymphocytes and liver microsomes derived from animals fed fish oil diets, relatively high levels of (n-3) eicosapentaenoic (20:5), docosapentaenoic (22:5) and docosahexaenoic acids (22:6) were obtained compared to minimal levels when fed the olive oil diet. When the average lipid motional properties were examined by measuring the fluorescence anisotropy of diphenylhexatriene, no significant different was found between intact liver microsomes from animals fed the two diets. However, when lipid motion was examined in vesicles of phosphatidylcholine, isolated from the microsomes from fish oil fed animals (21.4% (n-3) fatty acids), the fluorescence anisotropy was significantly less than the corresponding phosphatidylcholine from olive oil fed animals (5.6% (n-3) fatty acids), indicating a more disordered or fluid bilayer in the presence of higher levels of (n-3) fatty acids. Phosphatidylethanolamine (n-3) fatty acids were also elevated after fish oil supplementation (41.3% of total fatty acids), compared to the level after olive oil supplementation (21.4%). The major effect of the fish oil supplementation was a replacement of (n-6) arachidonic acid by the (n-3) fatty acids and when this was 'modeled', using liposomes of synthetic lipids, 1-palmitoyl-2-arachidonyl(n-6) or docosahexaenoyl(n-3)-phosphatidylcholine, significant differences in lipid motional properties were found, with the docosahexaenoate conferring a more disordered or fluid lipid environment. Thus it appears that although lipid order/fluidity can be significantly decreased by increases in the highly unsaturated (n-3) fatty acid levels, alterations in membrane domain organization and/or phospholipid molecular species composition effectively compensated for the changes, at least as far as average lipid motional properties in the intact membranes was concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号