首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E(2) (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E(2)/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E(2), IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans.  相似文献   

2.
Testosterone (T) secretion declines in the aging male, albeit for unknown reasons. From an ensemble perspective, repeated incremental signaling among gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and T is required to maintain physiological androgen availability. Pattern-regularity statistics, such as univariate approximate entropy (ApEn) and bivariate cross-ApEn, provide specific and sensitive model-free measurement of altered multi-pathway control. The present study exploits partial muting of one pathway (GnRH drive) to appraise adaptive regulation of LH and T secretion in young and aging individuals. Analyses comprised 100 paired 18-h LH and T concentration time series obtained in 25 healthy men ages 20-72 yr each administered placebo and three graded doses of a specific GnRH-receptor antagonist. Graded blockade of GnRH drive increased the individual regularity of LH and T secretion and the synchrony of LH-T feedforward and T-LH feedback in the cohort as a whole (P<0.001 for each). However, age markedly attenuated ganirelix-induced enhancement of univariate T orderliness and bivariate LH-T feedback and T-LH feedback synchrony (P 相似文献   

3.
To evaluate the impact on the somatotropic axis of endogenous cortisol excess in the absence of primary pituitary disease, we investigated spontaneous 24-h growth hormone (GH) secretion in 12 adult patients with ACTH-independent hypercortisolism. Plasma GH concentration profiles (10-min samples) were analyzed by deconvolution to reconstruct secretion and approximate entropy to quantitate orderliness of the release process. Comparisons were made with a body mass index (BMI)-, age-, and gender-matched control group and an age- and gender-matched lean control group. GH secretion rates did not differ from BMI-matched controls but were twofold lower compared with lean subjects, mainly due to a 2.5-fold attenuation of the mean secretory burst mass (P = 0.001). In hypercortisolemic patients, GH secretion was negatively correlated with BMI (R = -0.55, P = 0.005) but not cortisol secretion. Total serum IGF-I concentrations were similar in the three groups. Approximate entropy (ApEn) was increased in patients with Cushing's syndrome compared with both control groups (vs. BMI-matched, P = 0.04; vs. lean, P = 0.001), denoting more irregular GH secretion patterns. ApEn in patients correlated directly with cortisol secretion (R = 0.77, P = 0.003). Synchrony between cortisol and GH concentration series was analyzed by cross-correlation, cross-ApEn, and copulsatility analyses. Patients showed loss of pattern synchrony compared with BMI-matched controls, but copulsatility was unchanged. We conclude that hyposomatotropism in primary adrenal hypercortisolism is only partly explained (approximately 30%) by increased body weight and that increased GH secretory irregularity and loss of synchrony suggest altered coordinate regulation of GH release.  相似文献   

4.
Growth hormone secretion is controlled by the two hypothalamic hormones, growth hormone releasing factor (GRF) and somatostatin. In addition, the insulin-like growth factors (IGF or somatomedins) which are themselves growth hormone dependent, inhibit growth hormone release in vitro, therefore acting to close the negative feedback loop. The studies reported here examine some of the differences between inhibition of growth hormone secretion by somatostatin and IGF-I in vitro. The major finding is that cycloheximide, a protein synthesis inhibitor, blocks inhibition of GRF-stimulated growth hormone release caused by IGF-I, without changing the inhibition caused by somatostatin. The experiments were done by exposing mixed rat adenohypophysial cells to secretagogues with or without cycloheximide for 24 h in a short term culture. Somatostatin (0.6 nM) totally blocked rat GRF (1 nM) stimulated growth hormone release to values 48% of control (nonstimulated values), while IGF-I (27 nM) only reduced the GRF-stimulated growth hormone release by 27 +/- 3% (N = 5). Cycloheximide (15 micrograms/mL) totally blocked the effect of IGF-I but not somatostatin. A low concentration (0.12 nM) of somatostatin, which only partly inhibited growth hormone release, was also unaffected by cycloheximide. In purified rat somatotrophs, somatostatin (0.1 nM) inhibited GRF-stimulated cAMP levels slightly and reduced growth hormone release while IGF-I (40 nM) had no effect. We suggest that IGF-I inhibits only the secretion of newly synthesized growth hormone, while somatostatin inhibits both stored and newly synthesized growth hormone pools.  相似文献   

5.
Insulin-like growth factor I (IGF-I), a growth hormone (GH)-dependent growth factor exerts feedback regulation of GH by inhibiting GH gene expression. IGF-I inhibition of GH secretion is enhanced 3-5-fold in GC rat pituitary cells overexpressing the wild type 950Tyr human IGF-I receptor which autophosphorylates appropriately. To determine the critical amino acid sequence responsible for IGF-I signaling, insertion, deletion, and site-directed mutants were constructed to substitute for 950Tyr in exon 16 of the human IGF-I receptor beta-subunit transmembrane domain. All mutant transfectants bound IGF-I with a similar Kd to untransfected cells but had markedly increased (7-34-fold) IGF-I-binding sites. GH responsiveness to IGF-I was tested in mutant transfectants. Overexpressed site-directed and insertion mutant IGF-I receptors exhibited a modest suppressive effect on GH in response to the IGF-I ligand, similar to that observed in untransfected cells. Deletion mutant (IG-FIR delta 22) (amino acid 944-965) did not transduce the IGF-I signal to the GH gene. Site-directed and insertion mutants therefore did not enhance the IGF-I response of the endogenous rat receptor, unlike the 950Tyr wild type transfectants which enhanced the IGF-I signal. All mutant transfectants, except the deletion mutant, internalized radioactive ligand similarly to 950Tyr wild type transfectants. 950Tyr of the human IGF-I receptor is therefore required for IGF-I signal transduction in the pituitary somatotroph, but not for IGF-I-mediated internalization.  相似文献   

6.
Circulating testosterone (T) and GH/IGF-I are diminished in healthy aging men. Short-term administration of high doses of T augments GH secretion in older men. However, effects of long-term, low-dose T supplementation on GH secretion are unknown. Our objective was to evaluate effects of long-term, low-dose T administration on nocturnal GH secretory dynamics and AM concentrations of IGF-I and IGFBP-3 in healthy older men (65-88 yr, n = 34) with low-normal T and IGF-I. In a double-masked, placebo-controlled, randomized study we assessed effects of low-dose T supplementation (100 mg im every 2 wk) for 26 wk on nocturnal GH secretory dynamics [8 PM to 8 AM, Q(20) min sampling, analyzed by multiparameter deconvolution and approximate entropy (ApEn) algorithms]. The results were that T administration increased serum total T by 33% (P = 0.004) and E(2) by 31% (P = 0.009) and decreased SHBG by 17% (P = 0.002) vs. placebo. T supplementation increased nocturnal integrated GH concentrations by 60% (P = 0.02) and pulsatile GH secretion by 79% (P = 0.05), primarily due to a twofold increase in GH secretory burst mass (P = 0.02) and a 1.9-fold increase in basal GH secretion rate (P = 0.05) vs. placebo. There were no significant changes in GH burst frequency or orderliness of GH release (ApEn). IGF-I levels increased by 22% (P = 0.02), with no significant change in IGFBP-3 levels after T vs. placebo. We conclude that low-dose T supplementation for 26 wk increases spontaneous nocturnal GH secretion and morning serum IGF-I concentrations in healthy older men.  相似文献   

7.
Reduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle‐aged offspring of long‐living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24‐h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128–216) mU L?1] compared with controls [238 (193–284) mU L?1]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39–0.53)] compared with controls [0.66 (0.56–0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF‐1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.  相似文献   

8.
In the present in vitro experiments we examined FSH- and ghrelin-induced changes in ovarian hormone secretion by transgenic rabbits. Fragments of ovaries isolated from adult transgenic (carrying mammary gland-specific mWAP-hFVIII gene) and non-transgenic rabbits from the same litter were cultured with and without FSH or ghrelin (both at 0, 1, 10 or 100 ng/ml medium). The secretion of progesterone (P4), estradiol (E2) and insulin-like growth factor I (IGF-I) was assessed by RIA. It was observed that ovaries isolated from transgenic rabbits secreted much less P4, E2 and IGF-I than the ovaries of non-transgenic animals. In control animals FSH reduced E2 (at doses 1-100 ng/ml medium) and IGF-I (at 1-100 ng/ml), but not P4 secretion, whereas ghrelin promoted P4 (at 1 ng/ml) and IGF-I (at 100 ng/ml), but not E2 output. In transgenic animals, the effects were reversed: FSH had a stimulatory effect on E2 (at 100 ng/ml) and ghrelin had an inhibitory effect on P4 (at 10 ng/ml). No differences in the pattern of influence of FSH on P4 and IGF-I and of ghrelin on E2 and IGF-I were found between control and transgenic animals. The present observations suggest that 1) both FSH and ghrelin are involved in rabbit ovarian hormone secretion, 2) transgenesis in rabbits is associated with a reduction in ovarian secretory activity, and 3) transgenesis can affect the response of ovarian cells to hormonal regulators.  相似文献   

9.
10.
Mechanical signal transduction in skeletal muscle growth and adaptation.   总被引:6,自引:0,他引:6  
The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.  相似文献   

11.
Four miniature Brahman calves born in 1988 and 1989, along with four contemporary sex-matched Brahman control calves, were used in experiments to determine circulating concentrations of insulin-like growth factor I (IGF-I), growth hormone (GH), insulin, triiodothyronine, and thyroxine, and plasma glucose response to insulin challenge. The effect of plane of nutrition on plasma concentrations of IGF-I and insulin was also determined and a clinical screen of blood chemistries was conducted to determine effects of calf type. Plasma IGF-I was six times higher in control calves compared with miniature calves (209.0 vs 35.0 ng/ml; P = 0.001). However, miniature calves had mean plasma GH about six times higher (37.8 vs 6.2 ng/ml; P = 0.004) and had twice as many secretory episodes (9 vs 4.5; P = 0.005) over an 8-hr sampling period. Plasma concentrations of triiodothyronine (2.54 vs 1.80 ng/ml) and thyroxine (88.8 vs 56.2 ng/ml) were higher in control compared with miniature calves (P = 0.001), but concentrations of triiodothyronine and thyroxine in both calf types were within normal ranges. Although miniature calves displayed similar plasma glucose concentrations to controls, hypoglycemic response to insulin challenge tended to be greater in miniature calves. Nutritional regulation of circulating IGF-I appeared to be intact in miniature as well as control calves, as evidenced by a reduction in plasma IGF-I concentration following a decrease in plane of nutrition, and a subsequent increase in plasma IGF-I concentration following realimentation. Serum urea nitrogen was lower (P = 0.02) in control compared with miniature calves. These data describe a miniature condition in Brahman cattle that is manifested by apparently normal proportioned growth but small stature, and that is associated most notably with abnormally low circulating concentrations of IGF-I in the presence of paradoxically high circulating concentrations of GH. This condition appears to be similar to Laron dwarfism in humans, in which the low IGF-I is caused by an abnormality in the GH receptor.  相似文献   

12.
The hypothalamo-pituitary-testicular and hypothalamo-pituitary-adrenal axes are prototypical coupled neuroendocrine systems. In the present study, we contrasted in vivo linkages within and between these two axes using methods without linearity assumptions. We examined 11 young (21-31 yr) and 8 older (62-74 yr) men who underwent frequent (every 2.5 min) blood sampling overnight for paired measurement of LH and testosterone and 35 adults (17 women and 18 men; 26-77 yr old) who underwent adrenocorticotropic hormone (ACTH) and cortisol measurements every 10 min for 24 h. To mirror physiological interactions, hormone secretion was first deconvolved from serial concentrations with a waveform-independent biexponential elimination model. Feedforward synchrony, feedback synchrony, and the difference in feedforward-feedback synchrony were quantified by the cross-approximate entropy (X-ApEn) statistic. These were applied in a forward (LH concentration template, examining pattern recurrence in testosterone secretion), reverse (testosterone concentration template, examining pattern recurrence in LH secretion), and differential (forward minus reverse) manner, respectively. Analogous concentration-secretion X-ApEn estimates were calculated from ACTH-cortisol pairs. X-ApEn, a scale- and model-independent measure of pattern reproducibility, disclosed 1) greater testosterone-LH feedback coordination than LH-testosterone feedforward synchrony in healthy men and significant and symmetric erosion of both feedforward and feedback linkages with aging; 2) more synchronous ACTH concentration-dependent feedforward than feedback drive of cortisol secretion, independent of gender and age; and 3) enhanced detection of bidirectional physiological regulation by in vivo pairwise concentration-secretion compared with concentration-concentration analyses. The linking of relevant biological input to output signals and vice versa should be useful in the dissection of the reciprocal control of neuroendocrine systems or even in the analysis of other nonendocrine networks.  相似文献   

13.
Suppressor of cytokine signaling (SOCS) 1 was initially identified as an intracellular negative feedback regulator of the JAK-STAT signal pathway. Recently, it has been suggested that SOCS1 affects signals of growth factors and hormones. One of them, SOCS1, is also known to be involved in auto-regulation of IRS-1-mediated signaling. However, the mechanism(s) of SOCS1 induction by insulin-like growth factor (IGF)-I and a role of SOCS1 on IGF-I receptor-mediated signaling are not clarified. Here, we investigate SOCS1 on muscle differentiation. We found that muscle differentiation was suppressed in SOCS1 stable transformant C2C12 myoblasts, while it was promoted in SOCS1-deficient myoblasts. Additionally, SOCS1 augmented MEK phosphorylation and reduced Akt phosphorylation induced by IGF-I. Then, SOCS1 stable transformant C2C12 myoblasts, infected with adenovirus bearing constitutively active Akt, have the ability to differentiate again. Collectively, these findings suggest that SOCS1 suppresses muscle differentiation through negative feedback regulation of IGF-I receptor-mediated signaling.  相似文献   

14.
15.
16.
The existence of decreased hypothalamic dopaminergic tone in HIV-infected men has been suggested. In a cross-sectional study, we determined 12 h nocturnal basal and pulsatile prolactin (PRL) release levels (by blood sampling every 10 min) and their correlation with CD4+ T cells in seven volunteer HIV-negative, healthy men (group 1), and 21 normoprolactinemic, euthyroid, HIV-infected men divided into 3 groups (each group = 7): (i) group 2, asymptomatic HIV-infected stage A1 men, untreated; (ii) group 3, AIDS stage C3 without active opportunistic infections, untreated; and (iii) group 4, previously stage C3 after at least 6 months of successful highly active antiretroviral therapy. Serum PRL was measured by radioimmunoanalysis and the results were analysed by waveform-independent deconvolution analysis. CD4+ T lymphocytes were measured by flow cytometry and viral load by a nucleic acid sequence-based amplification assay. No differences were detected in the first two groups. In the third group, however, 100% of prolactin secretion was found to be pulsatile with a shorter secretory burst duration (P = 0.04), and a greater circulating half-life and pulse amplitude (P < or = 0.04). Group 4 had the greatest basal prolactin secretion (P < or = 0.04), and a shorter secretory burst duration (P = 0.04 vs group 2), circulating half-life (P = 0.01 vs group 3) and intersecretory burst interval (P = 0.06 vs group 1). PRL approximate entropy was similar among all groups. Linear correlations existed between CD4+ T cell counts and PRL secretory burst half duration (r = 0.62, P = 0.002) and amplitude (r = -0.63, P = 0.001), and in circulating serum half-life (r = - 0.61, P = 0.002) in HIV-infected groups. Viral load showed no correlations. It is suggested that differential changes in nocturnal prolactin secretion among HIV-infected men occurred while maintaining the normal coordinate feedback and/or feedforward control within the lactotropic axis. These changes may represent an adaptative mechanism to sustain, by different means, the maximal physiologic PRL production to stimulate the highest cellular immune response and/or reconstitution in attempting to survive.  相似文献   

17.
We recently discovered a new role for insulin-like growth factor-I (IGF-I) as a specific and direct stimulator of prolactin (PRL) release in addition to its recognized function as an inhibitor of growth hormone (GH) release and synthesis. Little is known of the mechanisms that transduce the actions of IGF-I on PRL and GH release in vertebrates. The present study was undertaken to determine the cellular pathways that mediate the disparate actions of IGF-I on PRL and GH release in hybrid striped bass (Morone saxatilis X M. chrysops). When regulating cellular function, IGF-I may activate two primary pathways, phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK). The specific MAPK inhibitor, PD98059, blocked IGF-I-evoked PRL release as well as GH release inhibition over an 18-20-h incubation. LY294002, a specific PI 3-K inhibitor, overcame IGF-I's inhibition of GH release but was ineffective in blocking PRL release stimulated by IGF-I. These studies suggest IGF-I disparately alters PRL and GH by activating distinct as well as overlapping signaling pathways central for mediating actions of growth factors on secretory activity as well as cell proliferation. These results further support a role for IGF-I as a physiological regulator of PRL and GH.  相似文献   

18.
The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.  相似文献   

19.
The main systemic disorders resulting from prolonged sleep deprivation in laboratory animals are a negative energy balance, low circulating thyroid hormones, and host defense impairments. Low thyroid hormones previously have been found caused by altered regulation at the level of the hypothalamus with possible pituitary involvement. The present studies investigated the effects of sleep deprivation on other major anabolic hormonal systems. Plasma growth hormone (GH) concentrations and major secretory bursts were characterized. Insulin-like growth factor I (IGF-I) was evaluated as an integrative marker of peripheral GH effector activity. Prolactin (PRL) was assessed by basal concentrations and by stimulating the pituitary with exogenous thyrotropin-releasing hormone. Leptin was studied for its linkage to metabolic signs of sleep loss and its correspondence to altered neuroendocrine regulation in other disease states. Last, plasma corticosterone was measured to investigate the degree of hypothalamic-pituitary-adrenal activation. Sleep deprivation was produced by the disk-over-water method, a well-established means of selective deprivation of sleep and noninterference with normal waking behaviors. Hormone concentrations were determined in sham comparisons and at intervals during baseline and experimental periods lasting at least 15 days in partially and totally sleep-deprived rats. The results indicate that high-amplitude pulses of GH were nearly abolished and that concentrations of GH, IGF-I, PRL, and leptin all were suppressed by sleep deprivation. Corticosterone concentration was relatively unaffected. Features of these results, such as low GH and low IGF-I, indicate failed negative feedback and point to hypothalamic mechanisms as containing the foci responsible for peripheral signs.  相似文献   

20.
One major approach to the study of growth factor receptor action has been to overexpress wild-type or mutant receptors in cultured cells and to evaluate biological responses to exogenous ligand. Studies of this type with insulin and insulin-like growth factor-I (IGF-I) receptors often use Chinese hamster ovary (CHO) cells. We have compared the effect of receptor overexpression in CHO cells and in NIH-3T3 fibroblasts in order to assess the suitability of CHO cells for studies of this nature and the contribution of cell type-specific factors to those responses generally assayed. Overexpression of IGF-I receptors in NIH-3T3 cells resulted in increased sensitivity and maximal responsiveness of thymidine incorporation, 2-deoxyglucose uptake, and phosphatidylinositol-3 (PI3) kinase activation to IGF-I stimulation. In CHO cells, on the other hand, overexpression of either IGF-I or insulin receptors increased the sensitivity of thymidine incorporation to ligand, but maximal responsiveness was unchanged or decreased. Overexpression of the insulin receptor increased sensitivity of glucose uptake and the maximal response of PI3 kinase activation to insulin. Overexpression of the IGF-I receptor did not affect sensitivity or maximal responsiveness of glucose uptake or PI3 kinase activation to IGF-I. These data suggest that IGF-I and insulin signal pathways may differ in CHO cells, and that there may even be divergent IGF-I signaling pathways for short vs. long-term effects. Whether this is a result of differences in the number of endogenous receptors, hybrid receptor formation, or defects in post-receptor signaling, the use of CHO cells to assess receptor function must be approached with caution. © Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号